September 18th/19th

Chapter 27 Current and Resistance

Midterm-1 (see website)

- Wednesday Sept. 24th at 6pm
 - 4:10 pm BCC N130 (Business College)
 - 6:00 pm NR 158 (Natural Resources)
- Allowed one sheet of notes (both sides) and calculator
- Need photo ID
- Send me an email if you have a class conflict – make-up exam at 8 am Thursday in 3234 BPS
- Use the help-room to prepare
- Review in class on Tuesday

Current (Fig. 27-1)

- What happens when charges move?
- Isolated conductor
 - Random motion of conduction electrons in both directions so no net transport of charges
 - Same potential everywhere, no *E* field inside or on surface so no electric *F* on electrons

No current in isolated conductor

Current (Fig. 27-1)

- What happens when charges move?
- Adding a battery
 - Bias flow of conduction electrons in one direction have net transport of charge
 - Not a single potential, have
 E field inside which exerts *F* on electrons
- Current in a conductor when attached to a battery

Current (Fig. 27-2)

- Amount of current, *i* equals amount of *q* that passes in time *t* through an area ⊥ to the flow
- If *i* doesn't vary with time (called steady state) *q* is conserved, *i* is the same for all planes which pass through conductor
 - Orientation doesn't matter

dqdt

Current (Fig. 27-3)

• SI unit for current is ampere

$$1A = 1C/s$$

Current is a scalar

 Use arrows to indicate charge flow along conductor

• q is conserved so

$$i_0 = i_1 + i_2$$

Current (Fig. 27-3)

- Convention: a current arrow is drawn in direction of + charge flow
 - Defined direction of current is opposite to direction of physical current (electrons are the moving charges)
- Current arrows are not vectors
- Bending or reorienting wires does not change

$$i_0 = i_1 + i_2$$

Current (Checkpoint #1)

• What is the magnitude and direction of the current, *i*, in the lower right-hand wire?

Current and Resistance

 Total current through a surface can be defined in terms of the Current density, *J* – flow of charge through a cross section

• If *J* is uniform and parallel to
$$dA$$

 $i = \int J dA = JA$

 $J = \frac{i}{A}$

 $i = \int \vec{J} \bullet d\vec{A}$

• SI unit for J is A/m²

Current and Resistance (Fig. 27-4)

- Represent *J* by streamlines
- *q* is conserved so amount of *i* cannot change
- J becomes greater in narrower conductor
- Streamlines closer together mean greater *J*

Current and Resistance (Fig. 27-5)

- No current in conductor electrons move randomly with speeds ≈ 10⁶ m/s (gray lines on bottom)
- If current is present electrons also move with a drift speed - V_d (green lines)
- Drift speeds are tiny $|v_d| \approx 10^{-5}$ or 10^{-4} m/s

Current and Resistance

• Why do the lights come on quickly?

E field provided by *V* moves at speed of light

- Relate the drift speed, V_d,
 to the charge density, J.
- Assume J uniform across cross-sectional area A
- Total charge in length *L* is
- Where n = number of carriers per unit volume
- Time to move a distance L is

$$q = ne(AL)$$

$$t = \frac{L}{v_d}$$

Current and Resistance

