# September 18th/19th 

Chapter 27
Current and Resistance

## Midterm-1 (see website)

- Wednesday Sept. 24th at 6pm
- $4: 10$ pm - BCC N130 (Business College)
- 6:00 pm - NR 158 (Natural Resources)
- Allowed one sheet of notes (both sides) and calculator
- Need photo ID
- Send me an email if you have a class conflict - make-up exam at 8 am Thursday in 3234 BPS

- Use the help-room to prepare
- Review in class on Tuesday


## Current (Fig. 27-1)

- What happens when charges move?
- Isolated conductor -
- Random motion of conduction electrons in both directions so no net transport of charges
- Same potential everywhere, no $E$ field inside or on surface so no electric $F$ on electrons
- No current in isolated conductor


## Current (Fig. 27-1)

- What happens when charges move?
- Adding a battery -
- Bias flow of conduction electrons in one direction have net transport of charge
- Not a single potential, have $E$ field inside which exerts $F$ on electrons
- Current in a conductor when attached to a battery


## Current (Fig. 27-2)

- Amount of current, $i$ equals amount of $q$ that passes in time $t$ through
 an area $\perp$ to the flow
- If $i$ doesn't vary with time (called steady state) $q$ is conserved, $i$ is the same for all planes which pass through conductor
- Orientation doesn't matter



## Current (Fig. 27-3)

- SI unit for current is ampere


## $1 A=1 C / s$

- Current is a scalar
- Use arrows to indicate charge flow along conductor
- $q$ is conserved so

$$
i_{0}=i_{1}+i_{2}
$$

## Current (Fig. 27-3)

- Convention: a current arrow is drawn in direction of + charge flow
- Defined direction of current is opposite to direction of physical current (electrons are the moving charges)
- Current arrows are not vectors
- Bending or reorienting wires
 does not change

$$
i_{0}=i_{1}+i_{2}
$$

## Current (Checkpoint \#1)

- What is the magnitude and direction of the current, $i$, in the lower right-hand wire?
- $q$ is conserved

$$
\begin{array}{r}
i_{\text {in }}=i_{\text {out }} \\
i_{\text {in }}=11 A \quad i_{\text {out }}=3 A+i
\end{array}
$$


$i=8 A \quad$ To the right

## Current and Resistance

- Total current through a surface can be defined in terms of the Current density, J- flow of charge

$$
i=\int \vec{J} \bullet d \vec{A}
$$ through a cross section

- If $J$ is uniform and parallel to $d A$

$$
i=\int J d A=J A
$$

$$
J=\frac{i}{A}
$$

- SI unit for $J$ is $A / \mathrm{m}^{2}$


## Current and Resistance (Fig. 27-4)

- Represent J by streamlines
- $q$ is conserved so amount of $i$ cannot change
- J becomes greater in narrower conductor
- Streamlines closer together mean greater J



## Current and Resistance (Fig. 27-5)

- No current in conductor electrons move randomly with speeds $\approx 10^{6} \mathrm{~m} / \mathrm{s}$ (gray lines on bottom)



## Current and Resistance

- Why do the lights come on quickly?
- $E$ field provided by $V$ moves at speed of light
- Relate the drift speed, $v_{d}$, to the charge density, $J$.
- Assume $J$ uniform across cross-sectional area $A$

- Total charge in length $L$ is $q=n e(A L)$
- Where $n=$ number of carriers per unit volume
- Time to move a distance $L$ is

$$
t=\frac{L}{v_{d}}
$$

## Current and Resistance

- Current is given by

$$
i=\frac{q}{t}=\frac{n e A L}{L / v_{d}}=n e A v_{d}
$$

- Solving for drift speed
- $v_{d}=\frac{i}{n e A} \quad$ But $\quad J=\frac{i}{A}$
- Thus $\vec{v}_{d}=\frac{\vec{J}}{n e}$ or $\vec{J}=(n e) \vec{v}_{d}$

