September 29th

Circuits - Chapter 28

Review of Chpt. 27

- Current, i, is defined as amount of charge q passing through plane in time t

$$
i=\frac{d q}{d t}
$$

- SI unit ampere, A

$$
1 A=1 C / s
$$

- Charge is conserved

$$
i_{0}=i_{1}+i_{2}
$$

- Current arrow drawn in the direction (+) charge carriers would move (actually it is the electrons that move).

Review of Chpt. 27

- Resistance is defined as
- SI unit is the ohm, Ω

$$
1 \Omega=1 V / A
$$

- Resistance of conducting wire of length L, resistivity ρ, and cross section A

$$
R=\rho \frac{L}{A}
$$

- Ohm's Law - R is independent of magnitude and polarity of V
$V=i R$

Review of Chpt. 27

- Power :

$$
P=V i
$$

- For a resistive device, the power dissipated in the resistor is:

$$
P=i^{2} R=\frac{V^{2}}{R}
$$

Circuits (Fig. 28-1)

- emf device (label terminal at higher V as + and lower V as -)
- Draw emf, E , arrow from - to + terminal
- Label the R with $\mathrm{a}+$ and -
- + charge carriers are moved against the Electric field in
 emf device from lower (-) to higher $(+) V$. The emf must $+V$ do work on the charge. Normally this is supplied by chemical energy.

Circuits (Fig. 28-3)

Ohm's Law:

$$
\mathrm{E}=i R
$$

(the supplies the potential difference V)

Circuits (Fig. 28-3)

- Calculate the current in single-loop circuit
- Use potential method (as called by the text book).
- Travel around circuit in either direction and
 algebraically add potential differences

Circuits (Fig. 28-3)

- Start at point a with potential V_{a}
- Move clockwise around circuit
- Pass through battery moving to higher V,
 change in V is $+E$
- Neglect resistance of connecting wires

$$
V_{a}+\mathrm{E}
$$

Circuits (Fig. 28-3)

- Top of resistor at same V as battery
- Pass through resistor V decreases and

$$
V=i R
$$

- Return to point a on bottom wire back to potential V_{a} so

$$
V_{a}+\mathrm{E}-i R=V_{a}
$$

Circuits (Fig. 28-3)

- We get back to Ohm's Law

$\mathrm{E}=i R$

- Could move around circuit counterclockwise

$$
V_{a}-\mathrm{E}+i R=V_{a}
$$

$$
\mathrm{E}=i R
$$

Circuits (Fig. 28-3)

- Kirchhoff's loop rule - in traversing a circuit loop the sum of the changes in V is zero, $\Delta V=0$

How do we add the changes in V?

- Resistance - Move through resistor
 in direction of current $V=-i R(-$ because it is down the hill), in opposite direction $V=+i R(+$ because we move up the hill)
- Emf - Move lower (-) to (+) adds potential and $V=+E$, in the opposite direction $V=-\mathrm{E}$.

Circuits - Checkpoint \#1

- A) What direction should the emf arrow point?

RIGHTWARD

-B) Rank magnitude of

current at points a, b, and c .

All same

- C) Rank V and U.
b, then a and c tie

Circuits (Fig. 28-4)

- So far assumed ideal battery - has no internal resistance
- Real battery has internal resistance to movement of charge
- Not in circuit $V=E$ of battery
- If current present $V=E-i R$, where R is the internal resistance of the battery

Circuits (Fig. 28-4a)

- Put real battery in circuit
- Using Kirchhoff's loop rule and starting at point a gives

$$
E-i r-i R=0
$$

$$
\mathrm{E}=i(r+R)
$$

- For ideal battery, $r=0$ and we get same as before

$$
\mathrm{E}=i R
$$

Circuits (Figs. 28-4a, 28-4b)

- Can represent changes in potential graphically

$$
E-i r-i R=0
$$

(a)

Emf device
Resistor
(b)

Circuits (Fig. 28-4a)

- What is the potential difference, V, between points a and b ?
- To find V between any 2 points in circuit
- Start at one point and traverse circuit to other
 following any path
- Add changes in V algebraically

Circuits (Fig. 28-4a)

- Moving from b to a clockwise gives

$$
\begin{aligned}
& V_{b}-i R=V_{a} \\
& V_{b}-V_{a}=i R
\end{aligned}
$$

- From loop rule know

$$
E-i r-i R=0
$$

$$
i=\frac{\mathrm{E}}{r+R}
$$

Circuits (Fig. 28-4a)

$$
V_{b}-V_{a}=i R
$$

$$
i=\frac{\mathrm{E}}{r+R}
$$

- Substituting for i gives

$$
V_{b}-V_{a}=\mathrm{E} \frac{R}{R+r}
$$

Circuits (Fig. 28-4a)

- Now move from b to a counterclockwise

$$
\begin{gathered}
V_{b}+i r-\mathrm{E}=V_{a} \\
V_{b}-V_{a}=\mathrm{E}-i r
\end{gathered}
$$

- Substituting i from loop rule

$$
i=\frac{\mathrm{E}}{r+R} \quad V_{b}-V_{a}=\mathrm{E} \frac{R}{R+r}
$$

Circuits (Fig. 28-4a)

- Suppose $E=12 \mathrm{~V}, \mathrm{R}=10 \Omega$ and $\mathrm{r}=2 \Omega$
- Potential across battery's terminals is

$$
V_{b}-V_{a}=\mathrm{E} \frac{R}{R+r}=(12 \mathrm{~V}) \frac{10 \Omega}{10 \Omega+2 \Omega}=10 \mathrm{~V}
$$

- V across terminals only equal to E if no internal resistance ($r=0$) or no current ($i=0$)

