September 3rd

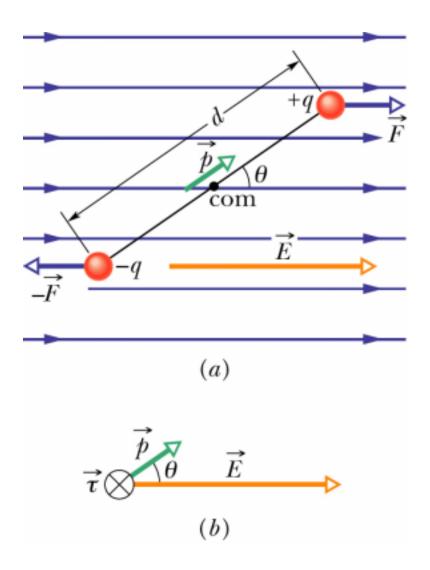
Chapters 23 & 24

Electric Dipole

$$\vec{\tau} = \vec{p} \times \vec{E}$$

- Torque acting on a dipole tends to rotate *p* into the direction of *E*
- Work done by *E* field on dipole when rotated

$$W = \int \tau d\theta$$



Electric Dipole

• Potential energy, U, related to work, W by

$$U = -W = -\int \tau d\theta$$

Potential energy related to torque

$$U = -\vec{p} \bullet \vec{E} = -pE\cos\theta$$

• U related to the orientation of dipole in E field

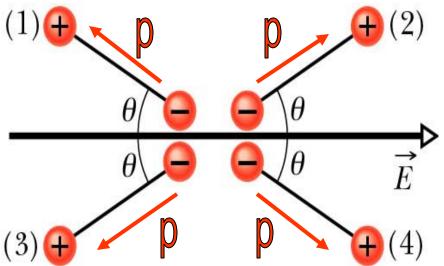
- Least when p and E are in same directions
- Greatest when p and E are in opposite directions

Checkpoint #5

 Rank a) magnitude of torque and b) U, greatest to least

$$\vec{\tau} = \vec{p} \times \vec{E} = pE\sin\theta$$

Magnitudes are samea) All tie



$$U = -\vec{p} \bullet \vec{E} = -pE\cos\theta$$

- *U* greatest at $\theta = 180$
- b) 1 & 3 tie, then 2 &4

Charge distributions

- Calculate *E* field from a continuous line or region of charge - Use calculus and a charge density
- Linear charge density
- Surface charge density

$$\lambda = Q / Length$$

$$\sigma = Q / Area$$

Volume charge density

$$\rho = Q / Volume$$

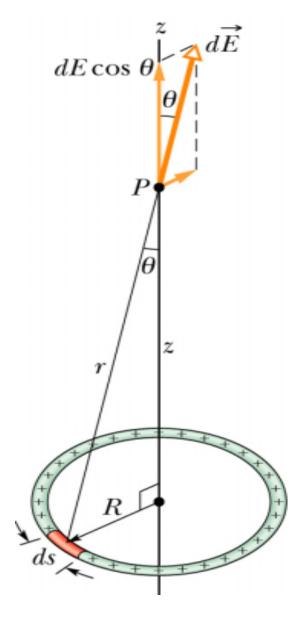
Charge distributions

Ring of radius *R* and positive charge density λ

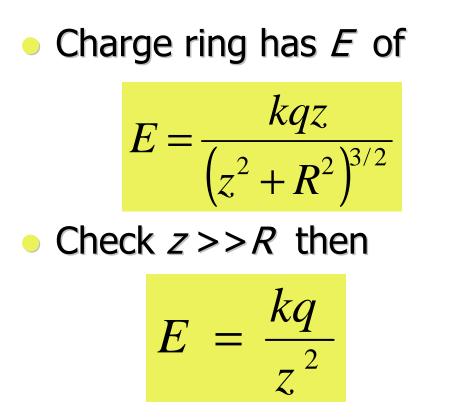
$$E = k \frac{q}{r^2}$$

 Divide ring into diff. elements of charge so

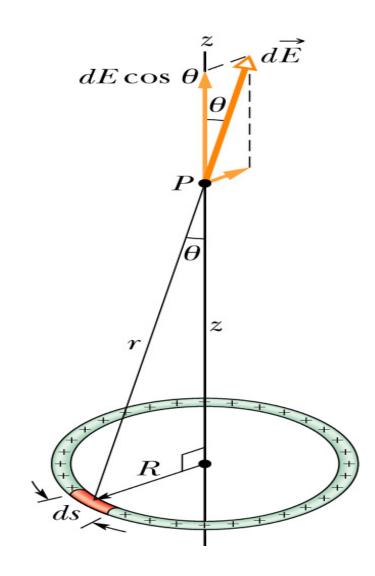
$$dq = \lambda ds$$



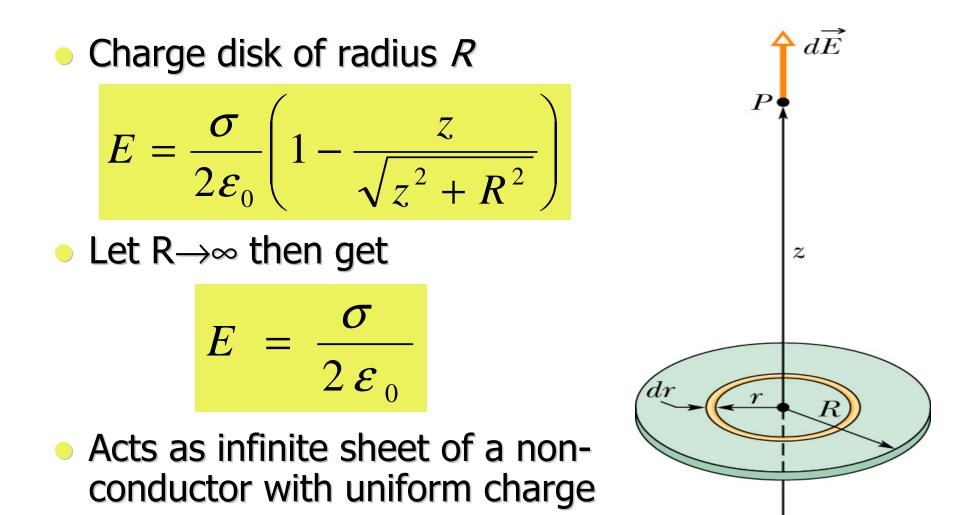
Electric Field of Charged Ring



 From far away ring looks like point charge



Electric Field of Charged Disk



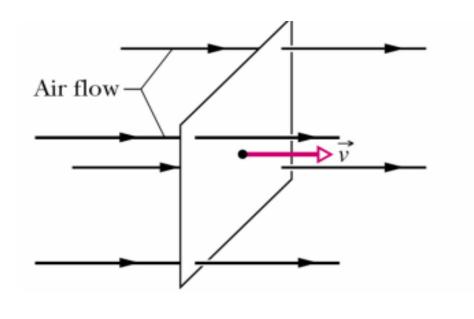
Gauss' Law

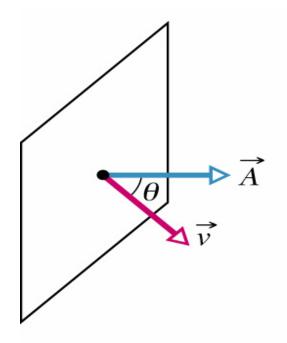
Easier way to calculate *E* fields – Gauss' Law

- Equivalent to Coulomb's law
- Use in symmetrical situations
- Gaussian surfaces hypothetical closed surface

- Flux, Φ, is rate of flow through an area
- Create area vector, \vec{A}
 - magnitude is A,
 - direction is normal (⊥) to area
- Flux of a velocity field through an area
- Relate velocity and area by

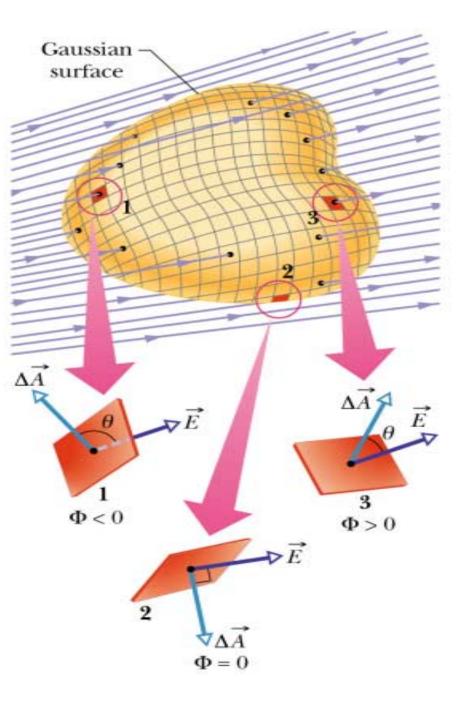
$$\Phi = (v\cos\theta)A = \vec{v}\bullet\vec{A}$$





- Gaussian surface in non-uniform *E* field
- Divide Gaussian surface into squares of area ΔA
- Flux of *E* field is

$$\Phi = \sum \vec{E} \bullet \Delta \vec{A}$$

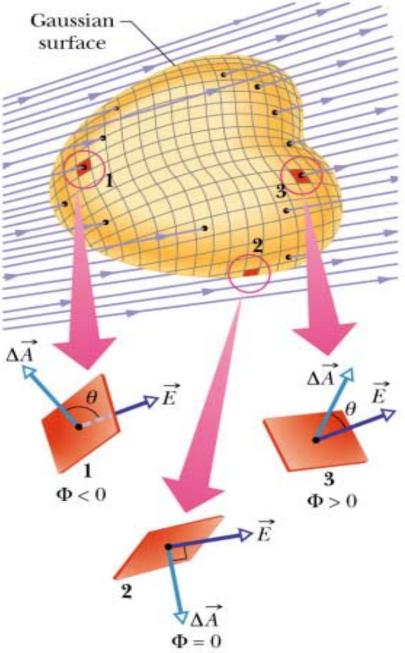


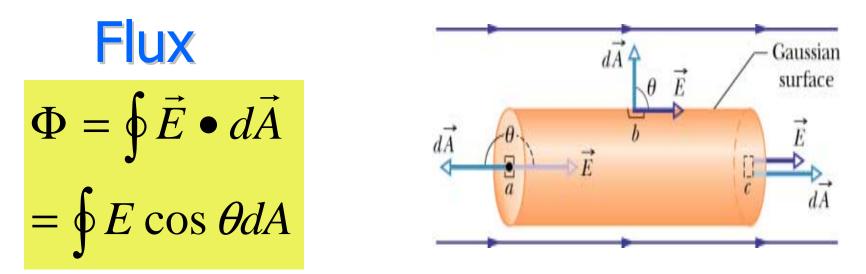
$$\Phi = \sum \vec{E} \bullet \Delta \vec{A}$$

 Let ΔA become small so flux becomes integral over Gaussian surface

$$\Phi = \oint \vec{E} \bullet d\vec{A}$$

 Flux is proportional to net # of E field lines passing through surface

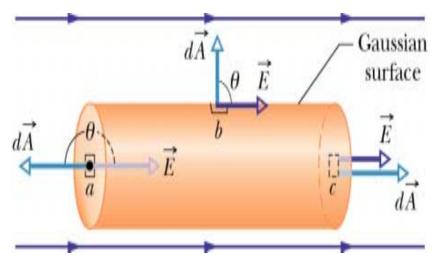




- If *E* field points inward at surface, Φ is –
- If *E* field points outward at surface, Φ is +
- If *E* field is along surface, Φ is zero
- If equal # of field lines enter as leave closed surface the net Φ is zero

Calculate flux of uniform
 E through cylinder

$$\Phi = \oint \vec{E} \bullet d\vec{A}$$



3 surfaces - a, b, and c

$$\Phi = \int_{a} \vec{E} \bullet d\vec{A} + \int_{b} \vec{E} \bullet d\vec{A} + \int_{c} \vec{E} \bullet d\vec{A}$$

• Flux is $\Phi = 0$

$$\int_{a} E(\cos 180) dA = -EA$$

$$\int_{b} E(\cos 90) dA = 0$$

$$\int_{c} E(\cos 0) dA = EA$$

$$\Phi = \oint \vec{E} \bullet d\vec{A} = -EA + 0 + EA = 0$$

Gauss' Law

Gauss' Law

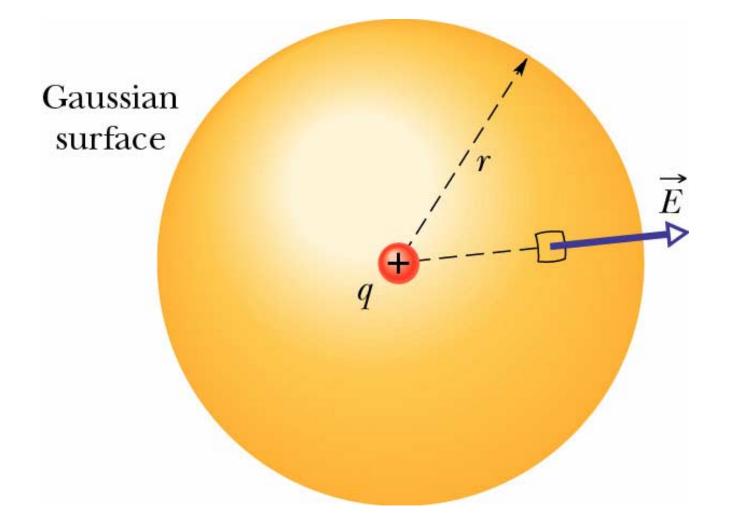
$$\mathcal{E}_0 \Phi = q_{enc}$$

Also write it as

$$\boldsymbol{\varepsilon}_0 \oint \vec{E} \bullet d\vec{A} = \boldsymbol{q}_{enc}$$

 Net charge q_{enc} is sum of all enclosed charges and may be +, -, or zero

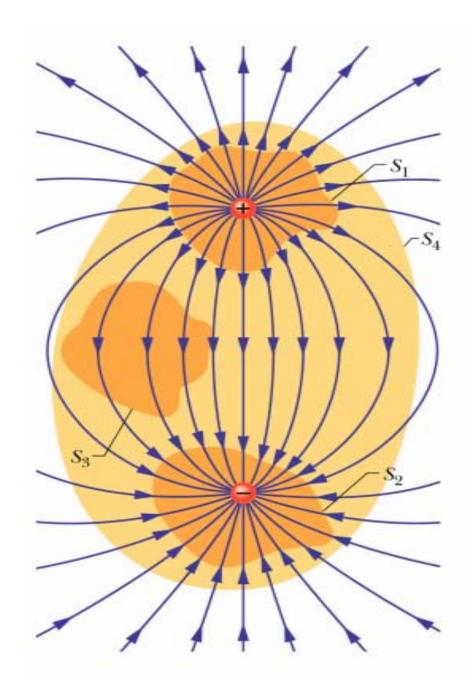
Gauss' Law = Coulomb's Law



 What is the flux for each surface?

 $\mathcal{E}_0 \Phi = q_{enc}$

- net S₁ q_{enc} is +
 Φ is outward and +
- S₂ q_{enc} is Φ is inward and –
- S₃ q_{enc} is 0
 Φ is 0
- S₄ total q_{enc} is 0
 Φ is 0



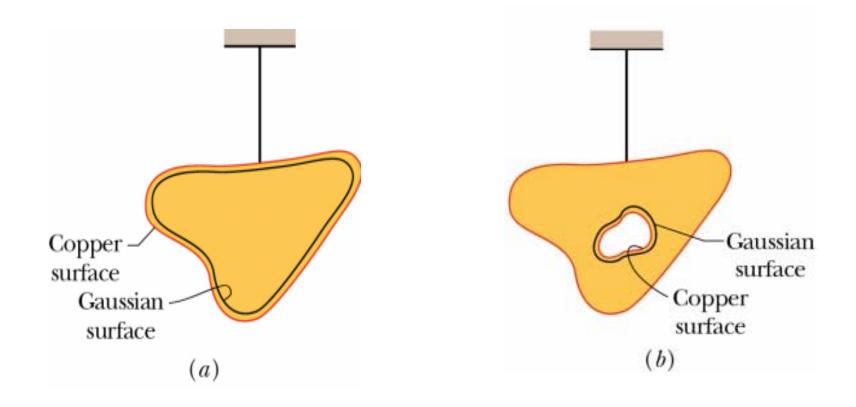
 What happens to the flux if I had a charge, Q, outside a Gaussian surface?

$$\mathcal{E}_0 \Phi = q_{enc}$$

- *Nothing* q_{enc} does not change
- *E* field does change but charge outside the surface contributes zero net Φ through surface

Conductors

- Theorem for charged isolated conductor with a net charge *Q*
 - Charge is always on the surface
 - No charge inside the conductor
 - E = 0 inside the conductor
- At the surface of a charged conductor the E field is \perp to the surface



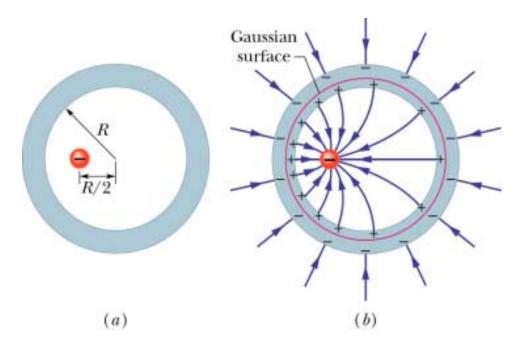
Conductors

 Usually charge on conductor is not uniform (except for a sphere)

 Charge will accumulate more at sharp points on an irregularly shaped conductor

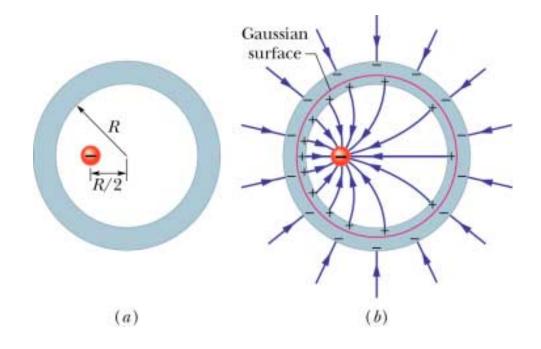
Example 1a

- Have point charge of -5.0µC not centered inside an electrically neutral spherical metal shell
- What are the induced charges on the inner and outer surfaces of the shell?



Example 1b

- E=0 inside conductor
- Thus Φ=0 for Gaussian surface
- So net charge enclosed must be 0
- Induced charge of +5.0µC lies on inner wall of sphere
- Shell is neutral so charge of -5.0µC on outer wall



Example 1c

- Are the charges on the sphere surfaces uniform?
- Charge is off-center so more + charge collects on inner wall nearest point charge
- Outer wall the charge is uniform
 - No E inside shell to affect distribution
 - Spherical shape

