## September 30th

## Circuits - Chapter 28

## Review (Fig. 28-3)

- Kirchhoff's loop rule - in traversina a circuit loop the sum of the changes in $V$ is zero, $\Delta V=0$
- Resistance rule - Move through resistor in direction of current $V=-i R$ ( + to -; higher to lower), in
 opposite direction $V=+i R(-$ to + ; up the hill).
- Emf rule - Move through emf device $V=+E$ going - to + , in opposite direction $V=-E$.


## Circuits (Fig. 28-5a)

- Resistors in series (one path from $b$ to $a$ )
- Have identical currents, i, through them
- Use Kirchhoff's loop rule

$$
\mathrm{E}-i R_{1}-i R_{2}-i R_{3}=0
$$



$$
i=\frac{E}{R_{1}+R_{2}+R_{3}}
$$

## Circuits (Figs. 28-5a, 28-5b)

- Resistors in series
- The 3 resistors act the same as an equivalent resistor $\mathrm{R}_{\text {eq }}$.

$$
\begin{aligned}
& i=\frac{}{R_{1}+R_{2}+R_{3}}=\frac{R_{\text {eq }}}{} \\
& R_{e q}=R_{1}+R_{2}+R_{3}
\end{aligned}
$$


(a)


## Circuits (Figs. 28-5a, 28-5b)

- Resistors in series
- Resistors have identical currents, $i$
- Sum of $V \mathrm{~s}$ across resistors = applied $V$

(a)
- $R_{e q}$ is sum of all resistors

$$
R_{e q}=\sum_{j=1}^{n} R_{j}
$$

## Circuits - Checkpoint \#2 (Fig. 28-5a)

- If R1>R2>R3, rank greatest first
- A) current through resistors $i$ is same for all, tie

$$
V=i R
$$

- B) V across them
R1, R2, R3



## Circuits (Fig. 28-8a)

- Resistors in parallel
- Have same V across them
- Arbitrarily choose direction for currents in each branch
- Write down current relation
 for each resistor

$$
i_{1}=\frac{V}{R_{1}}
$$

$$
i_{2}=\frac{V}{R_{2}}
$$

$$
i_{3}=\frac{V}{R_{3}}
$$

## Circuits (Fig. 28-8a)

- Resistors in parallel (more than one path from a to b)
- Apply Kirchhoff's junction rule at point a
- Substitute current values


$$
i=i_{1}+i_{2}+i_{3}
$$

$$
i=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

## Circuits (Figs. 28-8a,28-8b)

- Resistors in parallel
- Replace 3 resistors with equivalent resistor, $\mathrm{R}_{\text {eq }}$


$$
\frac{1}{R_{e q}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$



## Circuits - Checkpoint \#4

- Battery with potential V supplies current i to 2 identical resistors
- What is $V$ across and $i$ through either of the resistors if they are connected in
- A) Series - What is constant?

$$
i \text { is same, } v_{1}=V / 2
$$

- B) Parallel - What is constant?

$$
V \text { is same, } i_{1}=i / 2
$$

## Circuits

- Resistors
- Series

$$
R_{e q}=\sum_{j=1}^{n} R_{j}
$$

- Parallel

$$
\frac{1}{R_{e q}}=\sum_{j=1}^{n} \frac{1}{R_{j}}
$$

- Capacitors
- Series

$$
\frac{1}{C_{e q}}=\sum_{j=1}^{n} \frac{1}{C_{j}}
$$

- Parallel

$$
c_{e n}=\sum_{j=1}^{n} c_{j}
$$

## How to Analyze Complex Circuits

- Kirchhoff's junction rule (or current law) -
- From conservation of charge
- Sum of currents entering a junction is equal to sum of currents leaving that junction
- Kirchhoff's loop rule (or voltage law) -
- From conservation of energy
- Sum of changes in potential going around a complete circuit loop equals zero


## Kirchhoff's Rule \#1: Circuits (Fig. 28-8a)

- Arbitrarily label currents, using different subscript for each branch
- Using conservation of charge at each junction

$$
i_{i n}=i_{o u t}
$$

- At point d

$$
i_{1}+i_{3}=i_{2}
$$

- At point a $i_{1}=i_{1}$
- At point b

$$
i_{1}+i_{3}=i_{2}
$$

- At point c $i_{2}=i_{2}$


## Circuits (Figs. 28-6a, 28-6b)



## - Use Kirchhoff's loop rule

(b)


- Clockwise from point a gives

$$
-1 r_{2}-i R-i r_{1}+{ }_{1}=0
$$

- Counterclockwise from point a gives

$$
-1+i r_{1}+i R+i r_{2}+{ }_{2}=0
$$

## Circuits (Fig. 28-6a)

- Solve for $i-\square_{1}+i r_{1}+i R+i r_{2}+0$

$$
\begin{aligned}
& \quad \mathrm{i}=\frac{\sigma_{1}-\theta_{2}}{R+r_{1}+r_{2}} \\
& r_{1}=4.3 \Omega \quad r_{2}=1.8 \Omega \\
& \quad R=5.5 \Omega
\end{aligned}
$$

## Checkpoint \#3 (Fig. 28-4a)

- A real battery has $\mathrm{E}=12 \mathrm{~V}$ and $r=2 \Omega$. Is the V across the terminals greater than, less than or equal to 12 V if the current in the battery is
- A) from - to + terminal LESS THAN $V_{a}+\mathrm{E}-i r=V_{b}$

- B) from + to GREATER THAN

$$
V_{a}+\mathrm{E}+i r=V_{b}
$$

- C) $i=0$

EQUAL TO 12V

