September 4th/5th

Gauss' Law – Chapter 24

Review

Coulomb's law

- Like charges repel, F is away from other charge
- Unlike charges attract, F is toward other charge
- Electric field, *E*, felt by positive test charge, q_0

 $F = k \frac{|q_1||q_2|}{r^2}$

 $E = \frac{F}{q_0} = k \frac{|q|}{r^2}$

 Conversely F on a charged particle in an E field is

 $\vec{F} = q\vec{E}$

Gauss' Law (Review)

- Gauss' law form of Coulomb's law
 - *q*_{enc} is the total charge enclosed by a Gaussian surface

$$\mathcal{E}_0 \Phi = q_{enc}$$

 Flux is proportional to # of *E* field lines passing through a Gaussian surface

$$\Phi = \oint \vec{E} \bullet d\vec{A}$$

Gauss' Law (Review)

For conductors

• Excess charge resides on the surface

- E field is \perp to surface of conductor
- E = 0 inside a conductor

Conductors (Example)

A ball of charge -50e lies at the center of a hollow spherical metal shell that has a net charge of -100e. What is the charge on a) the shell's inner surface and b) its outer surface?

Example 1a

- Have point charge of -5.0µC not centered inside an electrically neutral spherical metal shell
- What are the induced charges on the inner and outer surfaces of the shell?

Example 1b

- E=0 inside conductor
- Thus Φ=0 for Gaussian surface
- So net charge enclosed must be 0
- Induced charge of +5.0µC lies on inner wall of sphere
- Shell is neutral so charge of -5.0µC on outer wall

Example 1c

- Are the charges on the sphere surfaces uniform?
- Charge is off-center so more + charge collects on inner wall nearest point charge
- Outer wall the charge is uniform
 - No E inside shell to affect distribution
 - Spherical shape

Conductors

How do we find *E* for just outside of a conducting surface?

Conductors (Fig. 24-10)

- Pick a cylindrical Gaussian surface embedded in the conductor
- Sum the flux through surface
- Inside conductor E = 0 so $\Phi = 0$
- Along walls of the cylinder outside the conductor E is \perp to A so $\Phi = 0$
- Outer endcap $\Phi = EA$

Conductors

• Using Gauss' law and $\Phi = EA$

$$\mathcal{E}_0 \Phi = \mathcal{E}_0 EA = q_{enc}$$

• If σ is charge per unit area, then

$$q_{enc} = \sigma A$$

• So *E* for a conducting surface is

$$E = \frac{\sigma}{\varepsilon_0}$$

Conductors

• *E* just outside a conductor is proportional to surface charge density at that location

$$E = \frac{\sigma}{\varepsilon_0}$$

- If charge on conductor, *E* toward conductor
- If + charge on conductor, *E* directed away

Gauss' Law (Fig. 24-12)

- Infinitely long insulating rod with linear charge density λ
- Pick Gaussian surface of cylinder coaxial with rod
- What does *E* look like?
- $\Phi = 0$ for the endcaps
- $\Phi = EA$ for cylinder

Gauss' Law (Fig. 24-12)

Substituting in Gauss' law gives

$$\mathcal{E}_{0}\Phi = \mathcal{E}_{0}EA = q_{enc}$$
$$A = 2\pi rh \quad q_{enc} = \lambda h$$

• E for a line of charge is

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$

Gauss' Law (Fig. 24-18)

 Apply Gauss' law to a uniformly charged spherical shell S₂

$$\varepsilon_0 \Phi = \varepsilon_0 \oint \vec{E} \bullet d\vec{A} = q_{enc}$$

• E radiates out || to A so

$$\oint \vec{E} \bullet d\vec{A} = EA$$

$$A=4\pi r^2$$

• Substitute to find E

enc

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}, r \ge R$$

Gauss' Law (Fig. 24-18)

- *E* outside of a charged spherical shell is same as *E* of point charge at center of shell.
- Charge inside S₁ is zero, so by Gauss' law E=0 inside shell, r < R.
- If a charge is placed inside there will be no force on it.

$$E = k \frac{q}{r^2}$$

Gauss' Law (Fig. 24-15)

• Non-conducting sheet of charge σ

$$\mathcal{E}_0 \oint \vec{E} \bullet d\vec{A} = q_{enc}$$

$$\mathcal{E}_0(EA + EA) = \sigma A$$

$$E = \frac{\sigma}{2\varepsilon_0}$$

Gauss' Law (Fig. 24-16)

- Conducting sheet of charge
 - Total charge spreads over two surfaces
 - σ₁ is charge on one surface,

•
$$\sigma_1 = \sigma/2$$

$$E = \frac{\sigma_1}{\varepsilon_0}$$

Gauss' Law (Fig. 24-16)

- Positive and negative charged conducting plates put together
 - Excess charges moves to inner faces
 - New total surface density, σ, is equal to 2σ₁

$$E = \frac{2\sigma_1}{\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$$

Gauss' Law (Checkpoint #5)

 Two large, parallel, non-conducting sheets with identical + charge and a sphere of uniform + charge. Rank magnitude of net *E* field for 4 points (greatest first).

Gauss' Law (Checkpoint #5)

• *E* due to point charge

$$E = k \frac{q}{r^2}$$

 Magnitude depends on distance r from point charge

3 and 4 tie, then 2, then 1

Gauss' Law (Fig. 24-19)

- Non-conducting solid sphere of radius R and total (uniform) charge q
- Gaussian sphere outside sphere

$$E = k \frac{q}{r^2}, r \ge R$$

Same as shell

Gauss' Law (Fig. 24-19)

 Use series of Gaussian spheres for inside

$$E = k \frac{q'}{r^2}$$

 Full charge enclosed within R is uniform so q' within r is proportional to q

$$\frac{q'}{\frac{4}{3}\pi r^3} = \frac{q}{\frac{4}{3}\pi R^3}$$

Gauss' Law (Fig. 24-19)

Enclosed charge at r is

$$q' = q \frac{r^3}{R^3}$$

• E field inside sphere

$$E = \frac{kqr}{R^3}, r \le R$$

