November 10th

Electromagnetic Waves
Chapter 34

"Ewww... another bad one! I see your. severed head laying lifelessly in the red-stained dirt. Next!"

Review: EM Waves

- Electromagnetic waves
- Beam of light is a traveling wave of E and B fields
- No limit to wavelength (or frequency)

$$
\nu=c=f \lambda
$$

- Wavelength (m)

Review: EM Waves

- EM Waves are:
- Transverse waves - E and B fields are \perp to direction of wave's travel
- Direction of wave's travel is given by cross product

$$
\vec{E} \times \vec{B}
$$

- E field is $\perp B$ field
- E and B fields vary
- Sinusoidally
- With same frequency and in phase

Review: EM Waves (Fig. 34-5)

- Write E and B fields as sinusoidal functions of position x (along the path of the wave) and time t

$$
\begin{aligned}
& E=E_{m} \sin (k x-\omega t) \\
& B=B_{m} \sin (k x-\omega t)
\end{aligned}
$$

- Angular frequency ω and angular wave number k

$$
\omega=2 \pi f \quad k=\frac{2 \pi}{\lambda}
$$

- E and B components cannot exist independently
- Maxwell's equations for induction

Review: EM Waves

- A light wave requires no medium for its travel
- Travels through a vacuum at speed of light, c

$$
v=c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

- Speed of light is the same regardless of the frame of reference from which it is measured

$$
c=\frac{E_{m}}{B_{m}}
$$

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

Energy transport in EM Waves

- EM waves can transport energy and deliver it to an object it falls on (e.g. a sunburn)
- Rate of energy transported per unit area at any instant is given by Poynting vector, S,

$$
S=\left(\frac{\text { energy } / \text { time }}{\text { area }}\right)_{\text {inst }}=\left(\frac{\text { power }}{\text { area }}\right)_{\text {inst }}
$$

- and defined as

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

- SI unit is $\mathrm{W} / \mathrm{m}^{2}$
- Direction of S gives wave's direction of travel

Traveling EM Waves (Fig. 34-4)

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

But E field is $\perp B$ field so the magnitude of S is

$$
S=\frac{1}{\mu_{0}} E B
$$

Checkpoint \#2

- Have an E field shown in picture. A wave is transporting energy in the negative z direction. What is the direction of the B field of the wave?

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

\vec{E} is in $+y$ direction
\vec{S} is in $-z$ direction

- Use right-hand rule to find B field

$$
\vec{B} \text { is in }+x \text { direction }
$$

Energy transport in EM Waves

- Magnitude of S is given by

$$
S=\frac{1}{\mu_{0}} E B
$$

- From Maxwell $c=\frac{E}{B}$
- Rewrite S in terms of E since most instruments measure E component rather than B

$$
S=\frac{1}{\mu_{0}} E \frac{E}{c}
$$

- Instantaneous energy flow rate is

$$
S=\frac{1}{c \mu_{0}} E^{2}
$$

Energy transport in EM Waves

- Usually want time-averaged value of S called intensity I

$$
I=S_{\text {avg }}=\frac{1}{\mu_{0} c}\left[E^{2}\right]_{\text {avg }}=\frac{1}{\mu_{0} c}\left[E_{m}^{2} \sin ^{2}(k x-\omega t)\right]_{\text {avg }}
$$

- Average value over full cycle of $\sin ^{2} \theta=1 / 2$
- Use the rms value

$$
E_{r m s}=\frac{E_{m}}{\sqrt{2}}
$$

- Rewrite average S or intensity as

$$
I=\frac{1}{\mu_{0} c} E_{r m s}^{2}
$$

Energy transport (Fig. 34-8)

- Find intensity, I, of point source which emits light isotropically equal in all directions

$$
I=S_{\text {avg }}=\left(\frac{\text { energy } / \text { time }}{\text { area }}\right)_{\text {ave }}=\left(\frac{\text { power }}{\text { area }}\right)_{\text {ave }}
$$

- Find I at distance r from source
- Imagine sphere of radius r and area $A=4 \pi r^{2}$

$$
I=\frac{\text { Power }}{\text { Area }}=\frac{P_{S}}{4 \pi r^{2}}
$$

- I decreases with square of distance

EM Waves: Problem 34-1

- Isotropic point light source has power of 250 W . You are 1.8 meters away. Calculate the rms values of the E and B fields.
- To find $E_{r m s} \quad I=\frac{1}{c \mu_{0}} E_{r m s}{ }^{2}$ but $I=\frac{P_{s}}{4 \pi r^{2}}$

$$
E_{r m s}=\sqrt{I c \mu_{0}}=\sqrt{\frac{P_{s} c \mu_{0}}{4 \pi r^{2}}}
$$

$$
E_{r m s}=\sqrt{\frac{(250)\left(3 \times 10^{8}\right)\left(1.26 \times 10^{-6}\right)}{(4 \pi)(1.8)^{2}}}=48.1 \mathrm{~V} / \mathrm{m}
$$

EM Waves: Problem 34-1

- Isotropic point light source as power of 250 W . You are 1.8 meters away. Calculate the rms values of the E and B fields.
- To find $B_{r m s}$

$$
\begin{aligned}
c & =\frac{E_{r m s}}{B_{r m s}} \quad \text { so } \quad B_{r m s}=\frac{E_{r m s}}{c} \\
B_{r m s} & =\frac{48.1 \mathrm{~V} / \mathrm{m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.6 \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

EM Waves: Problem 34-1

- Look at sizes of $E_{r m s}$ and $B_{r m s}$

$$
E_{r m s}=48.1 \mathrm{~V} / \mathrm{m} \quad B_{r m s}=1.6 \times 10^{-7} \mathrm{~T}
$$

- This is why most instruments measure E
- Does not mean that E component is stronger than B component in EM wave
- Can't compare different units
- Average energies are equal for E and B

$$
u_{E}=u_{B}
$$

EM Waves: Energy density

- The energy density of electric field, u_{E} is equal to energy density of magnetic field, u_{B}

$$
\begin{gathered}
u_{E}=\frac{1}{2} \varepsilon_{0} E^{2} \quad E=B c \\
u_{E}=\frac{1}{2} \varepsilon_{0}(c B)^{2}=\frac{1}{2} \varepsilon_{0} c^{2} B^{2} \\
u_{E}=\frac{1}{2} \varepsilon_{0} \frac{1}{\mu_{0} \varepsilon_{0}} B^{2}=\frac{B^{2}}{2 \mu_{0}} \\
u_{E}=u_{B}
\end{gathered}
$$

EM Waves: Radiation pressure

- Light shining on an object exerts radiation pressure on it
- Object's change in momentum is related to its change in energy
- If object absorbs all radiation from EM wave (total absorption)
- Think of object struck by elastic ball (tennis ball)

- If object reflects all radiation back in original direction (total reflection)
- Think of object struck by inelastic ball (lump of putty)

EM Waves: Radiation pressure

- Want force of radiation on object	
- For total absorption	$\Delta p=\frac{\Delta U}{}$

- Change in energy is amount of power P in time t

$$
\Delta U=P \Delta t
$$

- Power is related to intensity by

$$
P=I A
$$

- Find force is

$$
F=\frac{\Delta p}{\Delta t}=\frac{\Delta U}{c \Delta t}=\frac{I A \Delta t}{c \Delta t}=\frac{I A}{c}
$$

EM Waves: Radiation pressure

- For total absorption, force on object is

$$
F=\frac{I A}{c}
$$

- For total reflection back along original path

$$
\Delta p=\frac{2 \Delta U}{c} \text { so } F=\frac{2 I A}{c}
$$

EM Waves: Radiation pressure

- Express in terms of radiation pressure p_{r} which is force/area

$$
p_{r}=\frac{F}{A}
$$

- SI unit is $\mathrm{N} / \mathrm{m}^{2}$ called pascal $P a$
- Total absorption
- Total reflection

$$
p_{r}=\frac{I}{c}
$$

$$
p_{r}=\frac{2 I}{c}
$$

EM Waves: Polarization (Fig. 34-10)

- Source emits EM waves with E field always in same plane wave is polarized

- Indicate a wave is polarized by drawing double arrow
- Plane containing the E field is called plane of oscillation

(b)

EM Waves: Polarization (Fig. 34-11)

- Source emits EM waves with random planes of oscillation (E field changes direction) is unpolarized
- Example, light bulb or Sun
- Resolve E field into components
- Draw unpolarized light as superposition of 2 polarized waves with E fields \perp to each other

(b)

EM Waves: Polarization (Fig. 34-12)

- Transform unpolarized light into polarized by using a polarizing sheet
- Sheet contains long molecules embedded in plastic which was stretched to align the molecules in rows

- E field component || to polarizing direction of sheet is passed (transmitted), but \perp component is absorbed
- So after the light goes through the polarizing sheet it is polarized in the same direction as the sheet.

