November 11th

Electromagnetic Waves - Chapter 34

Review - EM Waves

- Poynting vector, S - rate of energy transported per unit area:

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

- Instantaneous energy flow rate

$$
S_{\text {peak }}=\frac{1}{\mu_{0} c} E_{m}^{2}
$$

$$
E_{r m s}=\frac{E_{m}}{\sqrt{2}}
$$

- Intensity - average value of S

$$
I=\frac{1}{\mu_{0} c} E_{r m s}^{2}
$$

Review: Radiation pressure

- For total absorption, force, momentum and radiation pressure on the object are

$$
F=\frac{I A}{c}
$$

$$
\Delta p=\frac{\Delta U}{c}
$$

$$
p_{r}=\frac{I}{c}
$$

- For total reflection back along original path, force, momentum and radiation pressure are

$$
F=\frac{2 I A}{c}
$$

$$
\Delta p=\frac{2 \Delta U}{c}
$$

$$
p_{r}=\frac{2 I}{c}
$$

EM Waves: Polarization (Fig. 34-10)

- Source emits EM waves with E field always in same plane wave is polarized

(a)
- Indicate a wave is polarized by drawing double arrow
- Plane containing the E field is called plane of oscillation

(b)

EM Waves: Polarization (Fig. 34-11)

- Source emits EM waves with random planes of oscillation (E field changes direction) is unpolarized

- Example, light bulb or Sun
- Resolve E field into components
- Draw unpolarized light as superposition of 2 polarized waves with E fields \perp to each other

EM Waves: Polarization (Fig. 34-12)

- Transform unpolarized light into polarized by using a polarizing sheet
- Sheet contains long molecules embedded in plastic which was stretched to align the molecules in rows Incident light ray

EM Waves: Polarization (Fig. 34-13)

- What is the intensity, / of the light transmitted by polarizing sheet?
- For initially polarized light, resolve E into components

$$
E_{y}=E_{\|}=E \cos \theta
$$

- Transmitted || component is

$$
I=\frac{1}{c \mu_{0}} E_{\|}{ }^{2}=\frac{1}{c \mu_{0}} E^{2} \cos ^{2} \theta=I_{0} \cos ^{2} \theta
$$

- Cosine-squared rule: Intensity of polarized wave changes as $\cos ^{2} \theta$

$$
I=I_{0} \cos ^{2} \theta
$$

EM Waves: Polarization (Fig. 34-12)

- For unpolarized light, average over $\cos ^{2} \theta$

$$
I=\frac{1}{2} I_{0}
$$

- Only light || to polarizer is transmitted

- One-half rule: Intensity of unpolarized wave after a polarizer is half of original

EM Waves: Polarization (Fig. 34-14)

- Have 2 polarizing sheets
- First one called polarizer
- Second one called analyzer
- Intensity of unpolarized light Polarizing going through first polarizer direction is

$$
I_{1}=\frac{1}{2} I_{0}
$$

- Light is now polarized and
 intensity of light after second analyzer is given by

$$
I_{2}=I_{1} \cos ^{2} \theta=\frac{1}{2} I_{0} \cos ^{2} \theta
$$

An interesting demo

- Effect of P_{1} and P_{3}
- Take $\theta_{1}=0^{\circ}$ and $\theta_{3}=90^{\circ}$
- After $\mathrm{P}_{1} \quad I_{1}=\frac{1}{2} I_{0}$

- After P_{3}

$$
I_{3}=I_{1} \cos ^{2}\left(90^{\circ}\right)=0
$$

An interesting demo

- Keep $\theta_{1}=0^{\circ} \quad \theta_{3}=90^{\circ}$
- Now insert P_{2} in between P_{1} and P_{3} with $\theta_{2}=45^{\circ}$
- After $\mathrm{P}_{1} \quad I_{1}=\frac{1}{2} I_{0}$

- After $\mathrm{P}_{2} \quad I_{2}=I_{1} \cos ^{2}\left(45^{\circ}\right)=\frac{1}{4} I_{0}$
- After $\mathrm{P}_{3} \quad I_{3}=I_{2} \cos ^{2}\left(45^{\circ}\right)=\frac{1}{8} I_{0}$

Checkpoint \#4

- Unpolarized light hits a polarizer and then an analyzer. The polarizing direction of each sheet is indicated by dashed line. Rank pairs according to fraction of initial intensity which is passed, greatest first.

Checkpoint \#4

- Look at relative orientation of polarization direction between the 2 sheets.
- What is the intensity if the sheets are...
- Polarized || - all light passes
- Polarized \perp to each other - no light passes
- For angles in between - get more light if closer to ||

Optical activity

- Certain materials rotate the plane of polarization
- The rotation angle may depends on the frequency (color)
- This is due to molecular asymmetry e.g. molecules with spiral shapes
- Karo syrup and scotch tape

Example of Polarized Light

- Two polaroids are placed in an unpolarized beam of light with angle $\theta=10^{\circ}$ between their axes. What percent of the incident light makes it through?

$$
I_{1}=\frac{1}{2} I_{0}
$$

$$
I_{2}=I_{1} \cos ^{2} \theta=\frac{1}{2} I_{0} \cos ^{2} \theta
$$

$$
\frac{I_{2}}{I_{0}}=\frac{1}{2} \cos ^{2} \theta=\frac{1}{2} \cos ^{2}(10)=0.4849
$$

Reflection \& Refraction (Fig. 34-17)

- Represent light waves as straight lines or rays
- If incident (incoming) light wave hits surface of different material some light will
- Be reflected back
- Travel through and be

Reflection \& Refraction (Fig. 34-17)

- Define a line, the normal, which is \perp to surface at point where the incident beam hits the surface
- Angles relative to normal
- Angle of incidence θ_{1}
- Angle of reflection $\theta_{1}{ }^{\prime}$
- Angle of refraction θ_{2}
- Plane containing incident
 ray and normal is plane of incidence

Reflection \& Refraction (Fig. 34-17)

- Law of reflection: Reflected ray lies in plane of incidence and angle for reflection is equal to angle of incidence

$$
\theta_{1}^{\prime}=\theta_{1}
$$

- Law of refraction: Refracted ray lies in plane of incidence
 and angle of refraction is related to angle of incidence by Snell's law

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}
$$

Reflection \& Refraction (Fig. 34-17)

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}
$$

- n is dimensionless constant called index of refraction
- Index of refraction, n for given medium is defined as

$$
n=\frac{\text { speed of light in vacuum }}{\text { speed of light in medium }}=\frac{c}{v}
$$

- Nothing has $n<1$, velocity of wave in medium is always less than the speed of light

