November 12th

Electromagnetic Waves
Chapter 34

Review

- Waves are polarized if E field component of EM waves always points in same direction
- EM waves with randomly oriented E fields are unpolarized
- Intensity of unpolarized light after hitting a polarizing sheet

$$
I=\frac{1}{2} I_{0}
$$

- Intensity of polarized light after hitting a polarizing sheet

$$
I=I_{0} \cos ^{2} \theta
$$

Reflection \& Refraction (Fig. 34-17)

- Represent light waves as straight lines or rays
- If incident (incoming) light wave hits surface of different material some light will
- Be reflected back
- Travel through and be

Reflection \& Refraction (Fig. 34-17)

- Define a line, the normal, which is \perp to surface at point where the incident beam hits the surface
- Angles relative to normal
- Angle of incidence θ_{1}
- Angle of reflection $\theta_{1}{ }^{\prime}$
- Angle of refraction θ_{2}
- Plane containing incident
 ray and normal is plane of incidence

Reflection \& Refraction (Fig. 34-17)

- Law of reflection: Reflected ray lies in plane of incidence and angle for reflection is equal to angle of incidence

$$
\theta_{1}^{\prime}=\theta_{1}
$$

- Law of refraction: Refracted ray lies in plane of incidence
 and angle of refraction is related to angle of incidence by Snell's law

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}
$$

Reflection \& Refraction (Fig. 34-17)

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}
$$

- n is dimensionless constant called index of refraction
- Index of refraction, n for given medium is defined as

$$
n=\frac{\text { speed of light in vacuum }}{\text { speed of light in medium }}=\frac{c}{v}
$$

- Nothing has $n<1$, velocity of wave in medium is always less than the speed of light

Reflection \& Refraction (Fig. 34-18)

$n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}$

$$
n_{2}=n_{1}
$$

$$
n_{2}>n_{1}
$$

$$
n_{2}<n_{1}
$$

$$
\theta_{2}=\theta_{1}
$$

$$
\theta_{2}<\theta_{1}
$$

$$
\theta_{2}>\theta_{1}
$$

Reflection \& Refraction (Fig. 34-18)

- Traveling from one medium to another
- Frequency of wave does not change.
- Thus the "color" does not change (when our eye sees "red" it is the frequency associated with red which is important).
- Wavelength and velocity do change

$$
n=\frac{c}{v}
$$

$$
\begin{aligned}
& v_{1}=\lambda_{1} f \\
& v_{2}=\lambda_{2} f
\end{aligned}
$$

$$
\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{c / n_{1}}{c / n_{2}}=\frac{n_{2}}{n_{1}}
$$

Dispersion (Fig. 34-19)

- n depends on wavelength of light, except in vacuum
- Beam consists of different wavelengths, rays are refracted at different angles and spread out chromatic dispersion
- White light consists of components of all the colors in visible spectrum with uniform intensities

Dispersion (Fig. 34-20)

- n for a medium is greater for shorter wavelengths (blue) than for longer (red)
- Blue light is bent more than red light

Dispersion (Fig. 34-20)

Dispersion (Figs. 34-21, 34-22)

- Examples of chromatic dispersion
- White light through a prism
- Rainbow

Internal reflection (Fig. 34-24)

- The angle of incidence which causes the refracted ray to point directly along the surface is called the critical angle, θ_{c}
- Angles larger than $\theta_{\mathbf{c}}$ no light is refracted so have total internal reflection

Internal reflection (Fig. 34-24)

- Find critical angle from Snell's law where incident ray is moving from medium with n_{1} to $\mathrm{n}_{\mathbf{2}}$

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

$$
n_{1} \sin \theta_{C}=n_{2} \sin 90
$$

$$
\theta_{C}=\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

- For total internal reflection to occur $\mathrm{n}_{\mathbf{2}}<\mathrm{n}_{1}$
- E.g. moving from water into air
- Will not happen if moving from air into water

Polarization by reflection (Fig. 34-27)

- Reflected light is partially polarized
- When the light is incident at the Brewster angle its reflected light is fully polarized \perp to the plane of incident
- Refracted light is
 still unpolarized

Polarization by reflection (Fig. 34-27)

- Found experimentally that reflected and refracted rays at the Brewster angle are \perp to each other

$$
\theta_{B}+\theta_{r}=90
$$

- From the general result

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

- We find the Brewster angle

$$
n_{1} \sin \theta_{B}=n_{2} \sin \left(90-\theta_{B}\right)=n_{2} \cos \theta_{B}
$$

$$
\theta_{B}=\tan ^{-1} \frac{n_{2}}{n_{1}}
$$

