November 13th/14th

Images

Chapter 35

Review: EM waves

- Intensity of unpolarized light after hitting a polarizing sheet

$$
I=\frac{1}{2} I_{0}
$$

- Intensity of polarized light after hitting a polarizing sheet

$$
I=I_{0} \cos ^{2} \theta
$$

- Peak intensity is twice the average intensity

$$
I_{p e a k}=2 I_{a v g}
$$

$$
I_{p e a k}=\frac{1}{c \mu_{0}} E_{m}^{2}=\frac{1}{c \mu_{0}}\left(\sqrt{2} E_{r m s}\right)^{2}=2 \frac{1}{c \mu_{0}} E_{r m s}^{2}=2 I_{a v g}
$$

Review: EM waves (Fig. 34-17)

- Law of reflection: $\theta_{1}^{\prime}=\theta_{1}$
- Law of refraction: Snell's law

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}
$$

- Index of refraction
- Nothing has $n<1$,

$$
n=\frac{c}{v}
$$

- Frequency of wave
- If $n_{2}=n_{1}$ then $\theta_{2}=\theta_{1}$

$$
\begin{array}{ll}
n_{2}>n_{1} & \theta_{2}<\theta_{1} \\
n_{2}<n_{1} & \theta_{2}>\theta_{1}
\end{array}
$$ does not change but

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}}
$$

Review: EM waves (Fig. 34-24, 27)

- Critical angle, θ_{c} - refracted ray along surface

$$
\theta_{C}=\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

- Total internal reflection no refracted ray
- Only occurs if $n_{2}<n_{1}$
- Brewster angle - reflected light is fully polarized

$$
\theta_{B}=\tan ^{-1} \frac{n_{2}}{n_{1}}
$$

Incident

Real \& Virtual images (Fig. 35-1)

- Real images - light intersects the image point
- Virtual images - light doesn't really intersect but images appears to come from that point
- Sunny day the mirage pool of water on the road is really reflection of low section of the sky in front of you

Plane mirrors (Fig. 35-2)

- Mirror - surface which reflects light in one direction instead of scattering it in many directions or absorbing it
- Plane mirror - flat reflecting surface
- Extend reflected rays from O behind mirror O
- Intersect at point of virtual image I

Plane mirrors (Fig. 35-3)

- Plane mirror - virtual image I is as far behind the mirror as the objec O is in front of it
- By convention, object distances p are positive, image distances i for virtual images are negative

$$
i=-p
$$

Plane mirrors (Figs. 35-4, 35-5)

- Plane mirror - virtual image I has same orientation and height as object O

- Only portion of mirror smaller than pupil of eye is used to form images

