November 17th

 ImagesChapter 35

Darrell suspected someone had once again slipped him a spoon with the concave side reversed.

Plane mirrors (Fig. 35-2)

- Mirror - surface which reflects light in one direction instead of scattering it in many directions or absorbing it
- Plane mirror - flat reflecting surface
- Extend reflected rays from O behind mirror O
- Intersect at point of virtual image I

Plane mirrors (Fig. 35-3)

- Plane mirror - virtual image I is as far behind the mirror as the object O is in front of it
- By convention, object distances p are positive, image distances i for virtual images are negative

$$
i=-p
$$

Plane mirrors (Figs. 35-4, 35-5)

- Plane mirror - virtual image I has same orientation and height as object O

- Only portion of mirror smaller than pupil of eye is used to form images

Spherical mirrors (Fig. 35-6)

- Spherical mirror - small section of the surface of a sphere
- Concave mirror - plane mirror caved in
- Center of curvature is in front of mirror
- Field of view is smaller
- Image is farther behind mirror and taller
- Make-up or shaving mirror

Spherical mirrors (Fig. 35-6)

- Convex mirror - plane mirror is flexed out
- Center of curvature is behind the mirror
- Field of view is larger
- Image is closer to the mirror and smaller
- Surveillance mirror

Spherical mirrors (Fig. 35-7)

- Object O infinite distance from mirror on central axis
- Concave mirror - focuses real image at a focal point in front of the mirror
- Convex mirror - focuses a virtual image at a focal point behind the mirror
- Distance from center of mirror to image is called focal length, f

(a)

Spherical mirrors (Fig. 35-6)

- Concave mirror has a real focal point
- Convex mirror has a virtual focal point indicated by a negative focal length
- Focal length, f is related to

(a) radius of curvature, r of mirror
- r is + for concave, - for convex

$$
f=\frac{1}{2} r
$$

Spherical mirrors (Fig. 35-9)

- Locate images by drawing rays
- Ray parallel to central axis, reflects through focal point (Ray 1)
- Ray passing through focal point, reflects parallel to central axis (Ray 2)
- Ray passing through center of curvature returns along itself (Ray 3)
- Ray hits mirror at intersection with central axis, reflects symmetrically about central axis (Ray 4)

Concave mirrors (Fig. 35-8)

- If object O inside focal point, $p<f$
- Extend rays behind mirror to find image I
- Image I is
- Virtual
- Bigger than object O

- Same orientation as object

Concave mirrors (Fig. 35-8)

- If object O at focal point, $p=f$
- Neither reflected or extended rays cross to form image
- Image is moved to infinity

Concave mirrors (Fig. 35-8)

- If object O between focal point f and twice the focal length, $f<p<2 f$
- Image I is
- Real
- Bigger than O
- Inverted

- At distance, $i>2 f$

Concave mirrors (Fig. 35-9)

- If object O outside two focal lengths, $O>2 f$
- Image I is
- Real
- Smaller than O
- Inverted
- At a distance $f<i<2 f$

Convex mirrors (Fig. 35-6)

- If object O placed anywhere on central axis
- Image I is
- Virtual
- Smaller than O
- Same orientation
- At distance, i<f

- For mirrors - real images on side where object is, virtual images on opposite side
- Convex and plane mirrors only form virtual images, have same orientation as object

Spherical mirrors (Fig. 35-8)

- Formula for focal length, f

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f}
$$

- Object distance p is +
- Image distance i is + for
 real images, - for virtual images
- Focal length f is + for concave mirror, - for convex mirror

Spherical mirrors (Fig. 35-8)

- Size of object or image measured \perp to central axis is defined to be height h
- Ratio of image's height h^{\prime} to object's height h is called lateral magnification

$$
|m|=\frac{h^{\prime}}{h}
$$

- Also written

$$
m=-\frac{i}{p}
$$

- m is + for same orientation
- m is - for inverted image
- Plane mirror $m=+1$

Checkpoint \#2

- Vampire bat is dozing on central axis of spherical mirror. It is magnified by $\mathrm{m}=-4$. Is this image a) real or virtual, b) inverted or same orientation as bat, c) on the same or opposite side of mirror as bat?
- $m=-4$ tells us image is bigger and inverted
- m is negative so i must be positive and the image is real - Real images only occur on same side of mirror
- Only concave mirrors give real images

Spherical mirrors table

Mirror Type	Object Location	Image Location	Image Size	Image Type	Image Orient- ation	Sign of f	Sign of i	Sign of
Plane	Any- where	$\mathrm{i}=-\mathrm{p}$	Equal	Virtual	Same	∞	-	+1
Concave	$\mathrm{p}<\mathrm{f}$	Any- where	Bigger	Virtual	Same	+	-	+
Concave	$\mathrm{f}<\mathrm{p}<2 \mathrm{f}$	$\mathrm{i}>2 \mathrm{f}$	Bigger	Real	Invert	+	+	-
Concave	$\mathrm{p}=2 \mathrm{f}$	$\mathrm{i}=2 \mathrm{f}$	Equal	Real	Invert	+	+	-
Concave	$\mathrm{p}>2 \mathrm{f}$	$2 \mathrm{f}>\mathrm{i}>\mathrm{f}$	Smaller	Real	Invert	+	+	-
Convex	Any-	$\mathrm{li}\|<\|\mathrm{f}\|$	Smaller	Virtual	Same	-	-	+

