

November 18th

Images

Chapter 35

Schedule

- HW set \#11 will open Tues. Nov. 18 ${ }^{\text {th }}$ and is due on Tues. Nov. $25^{\text {th }}$ at 7am.
- Third mid-term is Nov. 25 ${ }^{\text {th }}$ at 6pm
- HW set \#12 will open Wed. Nov. $26^{\text {th }}$ and is due on Wed. Dec. $3^{\text {rd }}$ at 7am.
- Corrections for the third exam will open Wed. Nov. $26^{\text {th }}$ at 5 pm and are due Mon. Dec. $8^{\text {th }}$ at 7am.
- Final exam is Dec. $8^{\text {th }}$ at 5:45-7:45pm.

Midterm Exam \#3

- Last mid-term is Tues. Nov. $25^{\text {th }}$ at $6 p m$.
- Section 1 in N100 BCC (Business College)
- Section 2 in 158 NR (Natural Resources)
- Covers homework sets \#9, 10 and 11!
- Chapters 32-35 in textbook
- Allowed one page (both sides) of notes and calculator.
- Bring photo id.
- Email Prof. Tollefson (tollefson@pa.msu.edu) if need make-up exam and explain why.
- Make-up exam will be Wed. Nov. $26^{\text {th }}$ at $8 a m$
- Review in class on Monday.

Review - Mirrors (Fia. 35-6)

- Plane - flat mirror
- Concave - caved in away from object
- Convex - flexed out toward object
- Real images on side where object is, virtual images on opposite side
- Plane and convex mirrors make only virtual images
- Concave mirrors can produce both real and virtual images

Review - mirrors (Fig. 35-7)

- Spherical mirrors have focal point, r is radius of curvature

$$
f=\frac{1}{2} r
$$

- Find focal length, f from

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f}
$$

- Object distance p is +
- Image distance i is + for real images, - for virtual images
- f is + for concave, - for convex

Review - mirrors

- Ratio of image's height h^{\prime} to object's height h is called lateral magnification, m

$$
|m|=\frac{h^{\prime}}{h}
$$

- Magnification also equal to

- m is + if image has same orientation as object
- m is - if image is inverted from object
- Plane mirror $m=+1$

Review - mirrors

| Mirror
 Type | Object
 Location | Image
 Location | Image
 Size | Image
 Type | Image
 Orient-
 ation | Sign
 of f | Sign
 of i | Sign
 of m |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plane | Anywhere | $\mathrm{i}=-\mathrm{p}$ | Equal | Virtual | Same | ∞ | $\mathbf{-}$ | $\mathbf{+ 1}$ |
| Concave | $\mathrm{p}<\mathrm{f}$ | Anywhere | Bigger | Virtual | Same | $\mathbf{+}$ | $\mathbf{-}$ | $\mathbf{+}$ |
| Concave | $\mathrm{f}<\mathrm{p}<\mathbf{2 f}$ | $\mathrm{i}>2 \mathrm{f}$ | Bigger | Real | Invert | $\mathbf{+}$ | $\mathbf{+}$ | $\mathbf{-}$ |
| Concave | $\mathrm{p}=2 \mathrm{f}$ | $\mathrm{i}=2 \mathrm{f}$ | Equal | Real | Invert | $\mathbf{+}$ | $\mathbf{+}$ | $\mathbf{-}$ |
| Concave | $\mathrm{p}>2 \mathrm{f}$ | $\mathbf{2 f}>\mathrm{i}>\mathrm{f}$ | Smaller | Real | Invert | $\mathbf{+}$ | $\mathbf{+}$ | $\mathbf{-}$ |
| Convex | Anywhere | $\mathrm{I}\|<\|\mathrm{f}\|$ | Smaller | Virtual | Same | $\mathbf{-}$ | $\mathbf{-}$ | $\mathbf{+}$ |

Refracting surfaces (Fig. 35-10)

- Images can be formed by refraction through transparent material
- Object O on left in medium with $n_{\mathbf{1}}$
- Normal to refracting surface is radial line through center of curvature C
- Ray bends toward normal if $n_{2}>n_{1}$
- Ray bends away from normal if $n_{2}<n_{1}$

Refracting surfaces (Fig. 35-10)

- Real images - when refraction directs ray towards central axis
- Virtual images - when refraction directs ray away from central axis
- Real images on side of refracting surface that is opposite the object, virtual images on same side as object

(c)

(e)

(b)

(d)

(f)

Refracting surfaces (Fig. 35-10)

- Relation for radius of curvature of refracting surface
- Object is in medium of n_{1}
- Object distance p is +

$$
\frac{n_{1}}{p}+\frac{n_{2}}{i}=\frac{n_{2}-n_{1}}{r}
$$

- Image distance i is + for real image, - for virtual image
- If object faces convex refracting surface radius r is + , faces concave surface r is -
- Reverse of sign convention for mirrors

Thin Lenses (Figs 35-12)

- Light rays bent by refraction form an image
- Converging - lens with convex refracting sides
- Diverging - lens with concave sides

(a)

(c)

(b)

(d)

Thin lenses images (Figs 35-13)

- Real images form on opposite side of lens from object, virtual images on same side
- Diverging lens only produces smaller, same orientation, virtual images (like convex mirror)
- Converging lens (like concave mirror) can produce both real and virtual images depending on where the object is in relation to the lens' focal point

Thin lenses images (Figs 35-12)

- Thin lenses have a focal point on each side of lens
- Focal length, f same as mirror

- Lens maker"s equation for lens in air, r_{1} is radius of lens surface nearest the object, r_{2} is other surface
- r is + for convex surface,
- for concave surface

Thin lenses images (Figs 35-15)

- Lateral magnification m same as for mirror
$m=-\frac{i}{p}$
- For a system of lenses or mirrors the total magnification M is product of each m

$$
M=m_{1} m_{2} m_{3} \ldots
$$

- Work through system of lenses one by one - use image from one lens as object for next lens

Thin Lenses

Converging lens $=$ concave mirror Diverging lens $=$ convex mirror

Thin Lens Type	Object Location	Image Location	Image Size	Image Type	Image Orientation	Sign of f	Sign of i	Sign of m
Converging	$\mathrm{p}<\mathrm{f}$	Anywhere	Bigger	Virtual	Same	+	-	+
Converging	$\mathrm{f}<\mathrm{p}<2 \mathrm{f}$	$\mathrm{i}>2 \mathrm{f}$	Bigger	Real	Invert	+	+	-
Converging	$\mathrm{p}=2 \mathrm{f}$	$\mathrm{i}=2 \mathrm{f}$	Equal	Real	Invert	+	+	-
Converging	$p>2 f$	$2 \mathrm{f}>\mathrm{i}>\mathrm{f}$	Smaller	Real	Invert	+	+	-
Diverging	Anywhere	$\|\mathrm{i}\|<\|\mathrm{f}\|$	Smaller	Virtual	Same	-	-	+

Human Eye

- Has a converging lens which makes real, inverted images at the retina
- Near point is the closest distance which our lens can focus light on the retina
- Distance increases with age
- Typically at age 10 is 18 cm , at 20 is 25 cm , at 40 is 50 cm , at 60 is 500 cm or more
- For problems will use 25 cm for human eye
- Nearsighted - correct with a diverging lens
- Farsighted - correct with converging lens

