

November 18th

Images Chapter 35

"Just checking."

Schedule

- HW set #11 will open Tues. Nov. 18th and is due on Tues. Nov. 25th at 7am.
 - Third mid-term is Nov. 25th at 6pm
- HW set #12 will open Wed. Nov. 26th and is due on Wed. Dec. 3rd at 7am.
- Corrections for the third exam will open Wed. Nov. 26th at 5pm and are due Mon. Dec. 8th at 7am.

• Final exam is Dec. 8th at 5:45-7:45pm.

Midterm Exam #3

- Last mid-term is Tues. Nov. 25th at 6pm.
 - Section 1 in N100 BCC (Business College)
 - Section 2 in 158 NR (Natural Resources)
- Covers homework sets #9, 10 and 11!
 - Chapters 32-35 in textbook
- Allowed one page (both sides) of notes and calculator.
- Bring photo id.
- Email Prof. Tollefson (tollefson@pa.msu.edu) if need make-up exam and explain why.
 - Make-up exam will be Wed. Nov. 26th at 8am
- Review in class on Monday.

Review – Mirrors (Fig. 35-6)

- Plane flat mirror
- Concave caved in away from object
- Convex flexed out toward object
- Real images on side where object is, virtual images on opposite side
- Plane and convex mirrors make only virtual images
- Concave mirrors can produce both real and virtual images

Review – mirrors (Fig. 35-7)

 Spherical mirrors have focal point, r is radius of curvature

$$f = \frac{1}{2}r$$

• Find focal length, f from

$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$$

• Object distance p is +

- Image distance *i* is + for real images, - for virtual images
- f is + for concave, for convex

Review - mirrors

 Ratio of image's height h² to object's height h is called lateral magnification, m

Magnification also equal to

$$|m| = \frac{h'}{h}$$

- *m* is + if image has same orientation as object
- *m* is if image is inverted from object
- Plane mirror m = +1

Review - mirrors

Mirror Type	Object Location	Image Location	Image Size	Image Type	Image Orient- ation	Sign of <i>f</i>	Sign of <i>i</i>	Sign of <i>m</i>
Plane	Anywhere	i = - p	Equal	Virtual	Same	~	-	+1
Concave	p < f	Anywhere	Bigger	Virtual	Same	+	-	+
Concave	f < p < 2f	i > 2f	Bigger	Real	Invert	+	+	-
Concave	p = 2f	i = 2f	Equal	Real	Invert	+	+	-
Concave	p > 2f	2f > i > f	Smaller	Real	Invert	+	+	-
Convex	Anywhere	i < f	Smaller	Virtual	Same	-	-	+

Refracting surfaces (Fig. 35-10)

- Images can be formed by refraction through transparent material
- Object O on left in medium with n_1
- Normal to refracting surface is radial line through center of curvature C
 - Ray bends toward normal if n₂>n₁
 - Ray bends away from normal if $n_2 < n_1$

Refracting surfaces (Fig. 35-10)

- Real images when refraction directs ray towards central axis
- Virtual images when refraction directs ray away from central axis
- Real images on side of refracting surface that is opposite the object, virtual images on same side as object

Refracting surfaces (Fig. 35-10)

- Relation for radius of curvature of refracting surface
- Object is in medium of n_1
- Object distance p is +
- Image distance *i* is + for real image, - for virtual image
- If object faces convex refracting surface radius r is +, faces concave surface r is –
 - Reverse of sign convention for mirrors

$$\frac{n_1}{p} + \frac{n_2}{i} = \frac{n_2 - n_1}{r}$$

Thin Lenses (Figs 35-12)

- Light rays bent by refraction form an image
- Converging lens with convex refracting sides
- Diverging lens with concave sides

Thin lenses images (Figs 35-13)

- Real images form on opposite side of lens from object, virtual images on same side
- Diverging lens only produces smaller, same orientation, virtual images (like convex mirror)
- Converging lens (like concave mirror) can produce both real and virtual images depending on where the object is in relation to the lens' focal point

Thin lenses images (Figs 35-12)

- Thin lenses have a focal point on each side of lens
- Focal length, f same as mirror $\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$

- Lens maker's equation for lens in air, r₁ is radius of lens surface nearest the object, r₂ is other surface
 - r is + for convex surface,
 for concave surface

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Thin Lenses

Converging lens = concave mirror Diverging lens = convex mirror

Thin Lens Type	Object Location	Image Location	Image Size	Image Type	Image Orient- ation	Sign of <i>f</i>	Sign of <i>i</i>	Sign of <i>m</i>
Converging	p < f	Anywhere	Bigger	Virtual	Same	+	-	+
Converging	f < p < 2f	i > 2f	Bigger	Real	Invert	+	+	-
Converging	p = 2f	i = 2f	Equal	Real	Invert	+	+	-
Converging	p > 2f	2f > i > f	Smaller	Real	Invert	+	+	-
Diverging	Anywhere	i < f	Smaller	Virtual	Same	-	-	+

Human Eye

- Has a converging lens which makes real, inverted images at the retina
- Near point is the closest distance which our lens can focus light on the retina
 - Distance increases with age
 - Typically at age 10 is 18cm, at 20 is 25cm, at 40 is 50cm, at 60 is 500cm or more
 - For problems will use 25cm for human eye
- Nearsighted correct with a diverging lens
- Farsighted correct with converging lens