

2166 Ese

Interference Chapter 36

Schedule

- HW set \#11 will open Tues. Nov. $18^{\text {th }}$ and is due on Tues. Nov. $25^{\text {th }}$ at noon.
- Third mid-term is Nov. 25th at 6pm
- HW set \#12 will open Wed. Nov. 26 ${ }^{\text {th }}$ and is due on Wed. Dec. $3^{\text {rd }}$ at 7 am.
- Corrections for the third exam will open Wed. Nov. $26^{\text {th }}$ at 5 pm and are due Mon. Dec. $8^{\text {th }}$ at 7 am.
- Final exam is Dec. $8^{\text {th }}$ at 5:45-7:45pm.

Midterm Exam \#3

- Last mid-term is Tues. Nov. 25th at 6pm.
- Section 1 in N100 BCC (Business College)
- Section 2 in 158 NR (Natural Resources)
- Covers homework sets \#9, 10 and 11!
- Chapters 32-35 in textbook
- Allowed one page (both sides) of notes and calculator.
- Bring photo id.
- Email Prof. Tollefson (tollefson@pa.msu.edu) if need make-up exam and explain why.
- Make-up exam will be Wed. Nov. $26^{\text {th }}$ at 8 am
- Review in class on Monday.

Review - Mirrors (Fia. 35-6)

- Plane - flat mirror
- Concave - caved in away from object
- Convex - flexed out toward object
- Real images on side where object is, virtual images on opposite side
- Plane and convex mirrors make only virtual images
- Concave mirrors can produce both real and virtual images

Review - mirrors (Fig. 35-7)

- Spherical mirrors have focal point, r is radius of curvature

$$
f=\frac{1}{2} r
$$

- Find focal length, f from

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f}
$$

- Object distance p is +
- Image distance i is + for real images, - for virtual images
- f is + for concave, - for convex

Review - mirrors

- Ratio of image's height h^{\prime} to object's height h is called lateral magnification, m
- Magnification also equal to

$$
|m|=\frac{h^{\prime}}{h}
$$

- m is + if image has same orientation as object
- m is - if image is inverted from object
- Plane mirror $m=+1$

Review - Thin lenses (Fig. 35-12)

- Light rays bent by refraction form an image
- Converging - lens with convex

(a) refracting sides
- Diverging - lens with concave sides

(c)

(b)

(d)

Review - Thin lenses (Fig. 35-13)

- Real images form on opposite side of lens from object, virtual images on same side
- Diverging lens only produces smaller, same orientation, virtual images (like convex mirror)
- Converging lens (like concave mirror) can produce both real and virtual images depending on where the object is in relation to the lens' focal point

Review - Thin lenses (Fig. 35-12)

- Thin lenses have a focal point on each side of lens
- Focal length, f same as mirror

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f}
$$

- Lens maker's equation for lens in air, r_{1} is radius of lens surface nearest the object, r_{2} is other surface
- r is + for convex surface, - for concave surface

$$
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

Review - Thin lenses (Fig. 35-4)

- Lateral magnification m same as for mirror

$$
|m|=\frac{h^{\prime}}{h} \quad m=-\frac{i}{p}
$$

- For a system of lenses or mirrors the total magnification M is product of each m

$$
M=m_{1} m_{2} m_{3} \ldots
$$

- Work through system of lenses one by one - use image from one lens as object for next lens

Review - Thin lenses

Converging lens = concave mirror Diverging lens = convex mirror

Thin Lens	Object Location	Image Location	Image Size	Image Type	Image Orient- ation	Sign of f	Sign of i	Sign of m
Converging	$\mathrm{p}<\mathrm{f}$	Anywhere	Bigger	Virtual	Same	$\mathbf{+}$	$\mathbf{-}$	$\mathbf{+}$
Converging	$\mathrm{f}<\mathrm{p}<2 \mathrm{f}$	$\mathrm{i}>2 \mathrm{f}$	Bigger	Real	Invert	$\mathbf{+}$	$\mathbf{+}$	$\mathbf{-}$
Converging	$\mathrm{p}=2 \mathrm{f}$	$\mathrm{i}=2 \mathrm{f}$	Equal	Real	Invert	$\mathbf{+}$	$\mathbf{+}$	$\mathbf{-}$
Converging	$\mathrm{p}>2 \mathrm{f}$	$2 \mathrm{f}>\mathrm{i}>\mathrm{f}$	Smaller	Real	Invert	$\mathbf{+}$	$\mathbf{+}$	$\mathbf{-}$
Diverging	Anywhere	$\|\mathrm{i}\|<\|\mathrm{f}\|$	Smaller	Virtual	Same	$\mathbf{-}$	$\mathbf{-}$	$\mathbf{+}$

Human Eye

- Has a converging lens which makes real, inverted images at the retina
- Near point is the closest distance which our lens can focus light on the retina
- Distance increases with age
- Typically at age 10 is 18 cm , at 20 is 25 cm , at 40 is 50 cm , at 60 is 500 cm or more
- For problems will use 25 cm for human eye
- Nearsighted - correct with a diverging lens
- Farsighted - correct with converging lens

Magnifying Lenses (Fig. 35-16)

(a)

- Object closer than near point: image blurred
- Use magnifying lenses

(b)
- Angular magnification:

$$
m=-\theta^{\prime} / \theta \quad \text { вит } \theta \approx h / 25 \mathrm{~cm} \quad \theta^{\prime} \approx h / f
$$

- Simple magnifier:

$$
m \approx-25 \mathrm{~cm} / f
$$

Compound microscope (Fig. 35-17)

- Lateral magnification

$$
m=-i / p=-s / f_{o b}
$$

- s is length of tube
- Microscope

$$
M=m_{\theta} m=-\frac{s}{f_{o b}} \frac{25 \mathrm{~cm}}{f_{e y}}
$$

Telescope (Fig. 35-18)

- Refracting telescope
- Two lenses - objective and eyepiece

$$
m=-\theta_{e y} / \theta_{o b}
$$

$\theta_{o b} \approx h^{\prime} / f_{o b} \quad \theta_{e y} \approx h^{\prime} / f_{e y}$

$$
m=-f_{o b} / f_{e y}
$$

- Reflecting telescope
- Mirror and lens

- $\mathrm{f}_{o b}$ is focal length of objective mirror

Light as a wave (Fig. 36-1)

- Light is an EM wave
- Interfering light waves combine to enhance or suppress colors in sunlight
- Soap bubbles, oil slicks
- Interference best evidence that light is a wave
- Huygen's principle - points on
 wavefront act as point sources of spherical wavelets, at time t new position of wavefront is tangent to wavelets

Index of refraction (Fig. 36-2)

- Can use Huygen's principle and geometry to prove Snell's law (see section 36-2)

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1}
$$

- Wavelength of light in two different media, 1 and 2, are proportional to

(b)

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{1}}{v_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{n_{2}}{n_{1}}
$$

Index of refraction

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{1}}{v_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{n_{2}}{n_{1}}
$$

- Frequency of light in medium is same as in vacuum
- Wavelength and velocity of light change in a medium and depend on its index of refraction, n
- Velocity of light in a medium is always smaller than speed of light in vacuum, c
- Wavelength of light in a medium, λ_{n} is smaller than in vacuum, λ and related by

$$
\lambda_{n}=\frac{\lambda}{n}
$$

Quiz 13

- Focal length equation
- Image distance i is + for real images, - for virtual images

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f}
$$

- Lateral magnification, m

$$
m=-\frac{i}{p} \quad|m|=\frac{h^{\prime}}{h}
$$

- m is + if image has same orientation as object
- m is - if image is inverted from object

