

November
26th
Interference
Chapter 36

Schedule for rest of term

- Nov. 26 (Wed) - class - finish Chpt. 36
- Dec. 1-2 (Mon-Tues) - cover Chpt. 37
- Dec. 3-5 (Wed-Fri) - Review for final
- Dec. 3 (Wed) - HW set \#12 due
- Dec. 8 (Mon) - Corrections \#3 due
- Dec. 8 (Mon) - 5:45-7:45 pm Final Exam
- N130 BCC (Business College) for section 1
- 158 NR (Natural Resources) for section 2

Review

- Materials of different n
- Different \#'s of wavelengths occur for different index of refractions, n
- Phase shift given by

$$
N_{2}-N_{1}=\frac{L}{\lambda}\left(n_{2}-n_{1}\right)
$$

n_{1}
$|\leftarrow L \rightarrow|$

- Effective phase difference is decimal fraction
- $1 \lambda=2 \pi$ radians $=360^{\circ}$

Review

- When 2 waves interact get interference
- If phase difference is 0 or integer \# of wavelengths $(1 \lambda, 2 \lambda, \ldots)$ waves are in-phase and constructively interfere giving a bright spot or maxima
- If phase difference is half a wavelength ($0.5 \lambda, 1.5 \lambda, \ldots$) waves are out-of-phase and destructively interfere giving a dark spot or minima

Review

- Different path lengths
- Ray 1 travels distance $\Delta \mathrm{L}$ farther than ray 2
- Waves interfere fully constructively when
$\Delta L=m \lambda, m=0,1,2, \ldots$

- Central maximum at $\mathrm{m}=0$, first order maxima $\mathrm{m}=1$, second order maxima $\mathrm{m}=2$
- Waves interfere fully destructively when

$$
\Delta L=(m+1 / 2) \lambda, m=0,1,2, \ldots
$$

- First order minima $m=0$, second order minima $m=1$, third order minima $\mathrm{m}=2$

Review

- Different path lengths
- Relate path length difference ΔL to angle with central axis θ and distance between slits d

$$
\Delta L=d \sin \theta
$$

- Maxima, bright spots at

$$
d \sin \theta=m \lambda, m=0,1,2, \ldots
$$

- Minima, dark spots at
$d \sin \theta=(m+1 / 2) \lambda, m=0,1,2, \ldots$

(a)

Review

- Different path lengths
- Use small angle relation

$$
\tan \theta \approx \sin \theta \approx \theta
$$

- Distance y on screen from of order m is
- D the is distance from slits to the screen and d is the distance between the slits

central maxima to maxima

Interference

- 3 ways for the phase difference between 2 light waves to change
- Waves travel through media of different indexes of refraction, n
- Waves travel along paths of different lengths
- Waves are reflected discuss today

Interference (Fig. 36-12)

- Interference of light occurs in thin films when light waves are reflected from front and back surfaces
- Both reflection and refraction occur at the surfaces

- Region ac is bright if waves are in phase; and dark if waves are out of phase
- Assume light almost \perp to film ($\theta \approx 0$) so path length difference $\Delta \mathrm{L}$ between ray 1 and 2 is 2 L

Interference (Fig. 36-13)

- Refraction at interface (the transmitted wave) never changes the phase
- Reflection of wave can give a phase difference Analogous to waves on a string
- Wave in denser string (moving slower) hits interface with lighter string
- Transmitted wave has same phase
- Reflected wave has same phase

- Wave in lighter string (moving faster) hits interface with denser string
- Transmitted wave has same phase
- Reflected wave phase shifts by $1 / 2 \lambda$

Interference

- Phase change due to reflection:
- Incident wave in medium with larger n (slower speed) no phase shift
- Light reflects off material with smaller n
- Incident wave in medium with smaller n (faster speed) phase shift of $1 / 2 \lambda$
- Light reflects off material with bigger n
- No phase shift for refracted light

Interference (Fig. 36-12)

- If $n_{1}, n_{3}=1.0$ for air, and $\mathrm{n}_{2}=1.5$ for glass
- Reflected ray 1 (at a) is phase shifted by $1 / 2 \lambda$ since $\mathrm{n}_{1}<\mathrm{n}_{2}$
- Reflected ray 2 (at b) has no
 phase shift since $n_{2}>n_{3}$

Checkpoint \#5

- Light reflects \perp from film of thickness L between 2 other media.
- A) For given index of refractions, which situations will give zero phase difference (or a bright spot) from reflection at film interfaces
- $n_{1}>n_{2}$ no phase change
- $\mathrm{n}_{1}<\mathrm{n}_{2}, 1 / 2 \lambda$ phase change

(1)

(2)

(3)

(4)

$$
\text { A) } 1 \& 4
$$

Interference (Fig. 36-12)

- For thin films 3 ways to get a phase difference between waves
- By reflection
- By waves traveling along different path lengths
- By waves traveling through different media
 of different n

Interference (Fig. 36-12)

- Phase change due to transmission in material n_{2} from a to b to c over a total length 2 L
- 1 and 2 are in phase if

$$
2 L=0, \lambda_{n 2}, 2 \lambda_{n 2} \ldots
$$

$$
2 L=m \lambda_{n 2}, m=0,1,2 \ldots
$$

- 1 and 2 are out of phase if

$$
2 L=\frac{1}{2} \lambda_{n 2}, \frac{3}{2} \lambda_{n 2} \cdots
$$

$$
2 L=\left(m+\frac{1}{2}\right) \lambda_{n 2}, m=0,1,2 \ldots
$$

$$
\lambda_{n 2}=\frac{\lambda}{n_{2}}
$$

Interference (Fig. 36-12)

- Assume n1<n2>n3 (air to glass to air)
- Rays 1 and 2 are $1 / 2 \lambda$ out of phase from reflections at a and b
- If we want the waves 1 and 2 to be in phase, ray 2 must change phase in the material n_{2} by the amount

$$
2 L=\left(m+\frac{1}{2}\right) \lambda_{n 2}, m=0,1,2 \ldots
$$

Interference (Fig. 36-12)

- And for waves 1 and 2 to be out of phase, ray 2 must change phase in the material by

$$
2 L=m \lambda_{n 2}, \mathrm{~m}=0,1,2, \ldots
$$

- $L \ll \lambda_{n 2}$ is the same as $\mathrm{m}=0$ - it will be out of phase (dark)
- An example is reflection from soap film - we can see varying
 thickness from the difference colors (very thin film looks dark)

Checkpoint \#5

- B) For the given index of refractions, which situations will film be dark if $2 \mathrm{~L}=0.5 \lambda_{\mathrm{n}}$

- For 1 and 4 there is no phase change from reflection, and the path difference of $0.5 \lambda_{n}$ will make the total out of phase (dark)
- For 2 and 3 there is a $1 / 2 \lambda_{n}$ phase change from reflection, and the path difference of $0.5 \lambda_{n}$ will make the total in phase (bright)

Interference

- Need combination of phase shifts from reflection and path length difference to determine what wavelengths of light will interfere destructively or constructively
- Equations for path length always hold but which equation gives in-phase and which gives out-ofphase waves depends on index of refractions of media

$$
\begin{aligned}
& 2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}}, \mathrm{~m}=0,1,2, \ldots \\
& 2 L=m \frac{\lambda}{n_{2}}, \mathrm{~m}=0,1,2, \ldots
\end{aligned}
$$

Sample problem 36-5

- What thickness, L, is needed to eliminate reflections at middle of visible spectrum $\lambda=550 \mathrm{~nm}$?
- Want destructive interference (out of phase)
- Need light waves reflected from 2 surfaces to be exactly out of phase
- First look at phase due to reflection
- Ray 1 is $1 / 2 \lambda$ since $n_{1}<n_{2}$
- Ray 2 is $1 / 2 \lambda$ since $n_{2}<n_{3}$

Sample problem 36-5

- What thickness, L, is needed to eliminate reflections at middle of visible spectrum $\lambda=550 \mathrm{~nm}$?
- Need path length difference to put rays out of phase

$$
2 L=\left(m+\frac{1}{2}\right) \lambda_{n 2}, \mathrm{~m}=0,1,2, \ldots
$$

- Least thickness is when $\mathrm{m}=0$

$$
L=\frac{\lambda_{n 2}}{4}=\frac{\lambda}{4 n_{2}}=\frac{550 \mathrm{~nm}}{4(1.38)}=99.6 \mathrm{~nm}
$$

$$
\lambda_{n 2}=\frac{\lambda}{n_{2}}
$$

