Revealing some of the mathematical computations every cartoonist must know.
What’s up for the rest of the term

- (A9) C33 – RLC circuits
- (A10) C34 – Electromagnetic (EM) waves
- (A11) C35 – Optics and images with EM waves
- (A12) C36 – Interference of EM waves
- C37 – Diffraction of EM waves
Summary of Forced Oscillations

<table>
<thead>
<tr>
<th>Element</th>
<th>Reactance/Resistance</th>
<th>Phase of Current</th>
<th>Phase angle ϕ</th>
<th>Amplitude Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>R</td>
<td>In phase</td>
<td>0°</td>
<td>$V_R = I_R R$</td>
</tr>
<tr>
<td>Capacitor</td>
<td>$X_C = \frac{1}{\omega_d C}$</td>
<td>Leads v_C (ICE)</td>
<td>-90°</td>
<td>$V_C = I_C X_C$</td>
</tr>
<tr>
<td>Inductor</td>
<td>$X_L = \omega_d L$</td>
<td>Lags v_L (ELI)</td>
<td>$+90^\circ$</td>
<td>$V_L = I_L X_L$</td>
</tr>
</tbody>
</table>

- **ELI (positively) is the ICE man**
 - Voltage or emf (E) before current (I) in an inductor (L)
 - Phase constant ϕ is positive for an inductor
 - Current (I) before voltage or emf (E) in capacitor (C)
RLC circuits

\[I = \frac{E_m}{\sqrt{R^2 + \left(\omega_d L - \frac{1}{\omega_d C} \right)^2}} \]

- Current is largest when
 \[\omega_d L - \frac{1}{\omega_d C} = 0 \]
- Or
 \[\omega_d = \sqrt{\frac{1}{LC}} = \omega \]

\(\omega \) is also called the resonance frequency (in the homework)

\[\omega = \omega_d = 2\pi f_d \]
AC circuits

- RLC circuit – resistor, capacitor and inductor in series
- Apply alternating emf

\[\mathcal{E} = \mathcal{E}_m \sin \omega_d t \]

- Elements are in series so same current is driven through each
- From the loop rule, at any time \(t \), the sum of the voltages across the elements must equal the applied emf

\[\mathcal{E} = v_R + v_C + v_L \]

\[i = I \sin(\omega_d t - \phi) \]
AC circuits - Equations

- Define **impedance, Z** to be
 \[
 Z = \sqrt{R^2 + (X_L - X_C)^2}
 \]

- **Resonant frequency** —
 natural freq = driving freq
 \[
 \omega = \omega_d = 2\pi f_d
 \]

- \[
 \tan \phi = \frac{X_L - X_C}{R}
 \]

\[
X_L = \omega_d L
\]

\[
X_C = \frac{1}{\omega_d C}
\]
AC circuits

- Instantaneous rate which energy is dissipated (power) in a resistor is
 \[P = i^2 R \]

- But
 \[i = I \sin(\omega_d t - \phi) \]
 \[P = I^2 R \sin^2(\omega_d t - \phi) \]

- Want average (rms) rate
 - Average over complete cycle T
 \[\langle \sin^2 \theta \rangle = 1/2 \]
AC circuits

- For alternating current circuits define **root-mean-square or rms** values for i, V and emf

\[I_{rms} = \frac{I}{\sqrt{2}} \quad V_{rms} = \frac{V}{\sqrt{2}} \quad \mathcal{E}_{rms} = \frac{\mathcal{E}}{\sqrt{2}} \]

- Ammeters, voltmeters - give rms values

- The average (rms) power dissipated by a resistor in an ac circuit is

\[P_{rms} = \frac{I^2 R}{2} = \left(\frac{I}{\sqrt{2}} \right)^2 R \quad \text{or} \quad P_{rms} = I_{rms}^2 R \]

- (Called P_{ave} in the book)
AC circuits

- If ac circuit has only resistive load $Z=R$ (e.g. at the resonance frequency)

\[P_{\text{rms}} = \mathcal{E}_{\text{rms}} I_{\text{rms}} \]

- Trade-off between current and voltage
 - For general use want low voltage
 - Means high current but

\[P_{\text{rms}} = I_{\text{rms}}^2 R \]

- General energy transmission rule:
 Transmit at the highest possible voltage and the lowest possible current
AC circuits

- **Transformer** – device used to raise (for transmission) and lower (for use) the ac voltage in a circuit, keeping iV constant
 - Has 2 coils (primary and secondary) wound on same iron core with different #s of turns
AC circuits

- Alternating primary current induces alternating magnetic flux in iron core
- Same core in both coils so induced flux also goes through the secondary coil
- Using Faraday’s law

\[
V_P = -N_P \frac{d\Phi_B}{dt}
\]

\[
V_S = -N_S \frac{d\Phi_B}{dt}
\]

\[
\frac{V_P}{N_P} = \frac{V_S}{N_S}
\]
AC circuits

- Transformation of voltage is

 \[V_s = V_p \frac{N_S}{N_P} \]

- If \(N_S > N_P \) called a step-up transformer
- If \(N_S < N_P \) called a step-down transformer
AC circuits

- Conservation of energy

\[I_P V_P = I_S V_S \]

\[I_S = I_P \frac{V_P}{V_S} = I_P \frac{N_P}{N_S} \]
AC circuits

- The current I_P appears in primary circuit due to R in secondary circuit.

$$I_P V_P = I_S V_S \quad I_S = \frac{V_S}{R}$$

$$I_P = \frac{V_S}{R} \frac{V_S}{V_P} = \frac{1}{R} \frac{V_S}{V_P}^2 V_P = \frac{1}{R} \left(\frac{N_S}{N_P} \right)^2 V_P$$

- Has for of $I_P = \frac{V_P}{R_{eq}}$ where

$$R_{eq} = \left(\frac{N_P}{N_S} \right)^2 R$$