November 5th

Chapter 33
RLC Circuits

Revealing some of the mathematical computations every cartoonist must know.

What's up for the rest of the term

- (A9) C33 - RLC circuits
- (A10) C34 - Electromagnetic (EM) waves
- (A11) C35 - Optics and images with EM waves
- (A12) C36 - Interference of EM waves C37 - Diffraction of EM waves

Summary of Forced Oscillations

Element	Reactance/ Resistance	Phase of Current	Phase angle ϕ	Amplitude Relation
Resistor	R	In phase Inductor	$\mathrm{X}_{\mathrm{L}}=\omega_{\mathrm{d}} \mathrm{L}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{I}_{\mathrm{R}} \mathrm{R}$ Capacitor
$\mathrm{X}_{\mathrm{C}}=1 / \omega_{\mathrm{d}} \mathrm{C}$	Leads v_{C} (ICE) Lags v_{L} (ELI)	-90°	$+90^{\circ}$	$\mathrm{V}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}} \mathrm{X}_{\mathrm{C}}$
$\mathrm{V}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}} \mathrm{X}_{\mathrm{L}}$				

- ELI (positively) is the ICE man
- Voltage or emf (E) before current (I) in an inductor (L)
- Phase constant ϕ is positive for an inductor
- Current (I) before voltage or emf (E) in capacitor (C)

$$
I=\frac{\text { RLC circuits }}{\sqrt[\boldsymbol{\varepsilon}_{\mathrm{m}}]{\sqrt{R^{2}+\left(\omega_{d} L-\frac{1}{\omega_{d} C}\right)^{2}}}}
$$

- Current is largest when

$$
\omega_{d} L-\frac{1}{\omega_{d} C}=0
$$

- Or

$$
\omega_{d}=\sqrt{\frac{1}{L C}}=\omega
$$

ω is also called the resonance frequency (in the homework)

$$
\omega=\omega_{d}=2 \pi f_{d}
$$

AC circuits

- RLC circuit - resistor, capacitor and inductor in series
- Apply alternating emf

$$
\mathcal{E}=\boldsymbol{\mathcal { E }}_{m} \sin \omega_{d} t
$$

- Elements are in series so same current is driven through each

$$
\mathbf{i}=\mathbf{I} \sin \left(\omega_{d} t-\phi\right)
$$

- From the loop rule, at any time t, the sum of the voltages across the elements must equal the applied emf

$$
\mathcal{E}=v_{R}+v_{C}+v_{L}
$$

AC circuits - Equations

$$
\mathcal{E}_{m}=I Z
$$

$$
\tan \phi=\frac{X_{L}-X_{C}}{R}
$$

- Define impedance, Z to be

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

where

$$
X_{L}=\omega_{d} L
$$

- Resonant frequency natural freq = driving freq

$$
X_{C}=\frac{1}{\omega_{d} C}
$$

$$
\omega=\omega_{d}=2 \pi f_{d}
$$

AC circuit Examples

AC circuits

- Instantaneous rate which energy is dissipated (power) in a resistor is

$$
P=i^{2} R
$$

- But $i=ı \sin \left(\omega_{d} t-\phi\right)$

$$
P=I^{2} R \sin ^{2}\left(\omega_{d} t-\phi\right)
$$

AC circuits

- For alternating current circuits define root-mean-square or rms values for i, V and emf

$$
I_{r m s}=\frac{I}{\sqrt{2}} \quad V_{r m s}=\frac{V}{\sqrt{2}} \quad \mathcal{E}_{r m s}=\frac{\mathcal{E}}{\sqrt{2}}
$$

- Ammeters, voltmeters - give rms values
- The average (rms) power dissipated by resistor in an ac circuit is

$$
P_{r m s}=\frac{1^{2} R}{2}=\left(\frac{I}{\sqrt{2}}\right)^{2} R
$$

$$
P_{r m s}=I_{r m s}^{2} R
$$

- (Called $P_{\text {ave }}$ in the book)

AC circuits

- If ac circuit has only resistive load $Z=R$ (e.g. at the resonance frequency)

$$
P_{r m s}=\mathcal{E}_{r m s} I_{r m s}
$$

- Trade-off between current and voltage
- For general use want low voltage
- Means high current but

$$
P_{r m s}=I_{r m s}^{2} R
$$

- General energy transmission rule: Transmit at the highest possible voltage and the lowest possible current

AC circuits

- Transformer - device used to raise (for transmission) and lower (for use) the ac voltage in a circuit, keeping iV constant
- Has 2 coils (primary and secondary) wound on same iron core with different \#s of turns

AC circuits

- Alternating primary current induces alternating magnetic flux in iron core
- Same core in both coils so induced flux also goes through the secondary coil
- Using Faraday's law

$$
\begin{gathered}
V_{P}=-N_{P} \frac{d \Phi_{B}}{d t} \quad V_{S}=-N_{S} \frac{d \Phi_{B}}{d t} \\
\frac{V_{P}}{N_{P}}=\frac{V_{S}}{N_{S}}
\end{gathered}
$$

AC circuits

- Transformation of voltage is

$$
V_{S}=V_{P} \frac{N_{S}}{N_{P}}
$$

- If $N_{\boldsymbol{s}}>N_{\boldsymbol{P}}$ called a step-up transformer
- If $N_{s}<N_{P}$ called a step-down transformer

AC circuits

- Conservation of energy

$$
\begin{gathered}
I_{P} V_{P}=I_{S} V_{S} \\
I_{S}=I_{P} \frac{V_{P}}{V_{S}}=I_{P} \frac{N_{P}}{N_{S}}
\end{gathered}
$$

AC circuits

- The current $I_{\boldsymbol{P}}$ appears in primary circuit due to R in secondary circuit.

$$
\begin{gathered}
I_{P} V_{P}=I_{S} V_{S} \quad I_{S}=V_{S} / R \\
I_{P}=\frac{V_{S}}{R} \frac{V_{S}}{V_{P}}=\frac{1}{R} \frac{V_{S}^{2}}{V_{P}^{2}} V_{P}=\frac{1}{R}\left(\frac{N_{S}}{N_{P}}\right)^{2} V_{P}
\end{gathered}
$$

- Has for of $I_{P}=V_{P} / R_{\text {eq }}$ where

$$
R_{e q}=\left(\frac{N_{P}}{N_{S}}\right)^{2} R
$$

