December 1st

Diffraction
Chapter 37

"I'm the invention. The inventor should be along any moment now."
Schedule for rest of term

- Dec. 1-2 (Mon-Tues) – cover Chpt. 37
- Dec. 3-5 (Wed-Fri) – Review for final
- Dec. 3 (Wed) – HW set #12 due
- Dec. 8 (Mon) – Corrections #3 due
- Dec. 8 (Mon) – Final Exam 5:45-7:45pm
 - N130 BCC (Business College) for section 1
 - 158 NR (Natural Resources) for section 2
Review

- When 2 waves interact get interference
 - If phase difference is 0 or integer \# of wavelengths (1\(\lambda\), 2\(\lambda\), ...) waves are in-phase and constructively interfere giving a bright spot or maxima
 - If phase difference is half a wavelength (0.5\(\lambda\), 1.5\(\lambda\), ...) waves are out-of-phase and destructively interfere giving a dark spot or minima
Review

- 3 ways for phase difference between 2 light waves to change
 - Waves travel through media of different indexes of refraction, n
 - Waves travel along paths of different lengths
 - Waves are reflected
Review

- Materials of different n
 - Different #’s of wavelengths occur in different n’s
 \[N_1 = \frac{L}{\lambda_{n_1}} = \frac{Ln_1}{\lambda} \]
 - Phase shift given by
 \[N_2 - N_1 = \frac{L}{\lambda}(n_2 - n_1) \]
 - Effective phase difference is decimal fraction
 - $1 \lambda = 2\pi$ radians $= 360^\circ$
Review

- **Different path lengths**
 - Ray 1 travels distance ΔL farther than ray 2
 - Waves interfere fully constructively when $m \lambda = \Delta L$, $m = 0, 1, 2, ...$

- Central maximum at $m=0$, first order maxima $m=1$, second order maxima $m=2$

- Waves interfere fully destructively when $\Delta L = (m + 1/2) \lambda$, $m = 0, 1, 2, ...$

- First order minima $m=0$, second order minima $m=1$, third order minima $m=2$
Review

- Different path lengths
- Relate path length difference ΔL to angle with central axis θ and distance between slits d

$$\Delta L = d \sin \theta$$

- Maxima, bright spots at

$$d \sin \theta = m\lambda, \ m = 0,1,2,...$$

- Minima, dark spots at

$$d \sin \theta = (m + 1/2)\lambda, \ m = 0,1,2,...$$
Review

- **Different path lengths**

- **Use small angle relation**
 \[\tan \theta \approx \sin \theta \approx \theta \]

- **Distance** \(y \) **on screen from central maxima to maxima of order** \(m \) **is**
 - \(D \) **is distance between screen and slits**, \(d \) **is distance between slits**
 \[y = \frac{mD\lambda}{d} \]
Review

- **Reflection**
- If incident light reflected by surface with higher n phase shifted by $\frac{1}{2}\lambda$
 - $n_1 < n_2$, phase shift = 0.5λ
- If incident light reflected by surface with lower n no phase shift
 - $n_1 > n_2$, phase shift = 0
- **Refracted light is not phase shifted**

Example: soap bubble in air
Review

- Phase shift from thin films
- Combine reflection and path length difference
- First find phase shift (if any) between 2 rays from reflection at top and bottom of film
- Which path length equation to use depends on the reflection phase shift and what type of interference you want, maxima or minima

\[2L = (m + \frac{1}{2}) \frac{\lambda}{n_2}, \quad m = 0,1,2,... \]

\[2L = m \frac{\lambda}{n_2}, \quad m = 0,1,2,... \]
Diffraction

- Waves **diffract** (bend) if pass through an opening whose size is comparable to its wavelength
- The narrower the slit, the greater the diffraction
- Example of **double-slit interference** assumed slit width a much smaller than λ of incident light and we talked about 2 light rays
Two slit interference (Fig. 36-9)

- Intensity of 2 coherent sources
 \[I = 4I_0 \cos^2 \left(\frac{1}{2} \phi \right) \]

- Maxima when
 \[\phi = 2\pi m \]

- Minima when
 \[\phi = 2\pi (m + 1/2) \]

- \(m \) is called the “order”

\[y = \frac{m \lambda D}{d}, \quad m = 0, 1, 2 \ldots \]
3-slit interference

- The distance between each is d.
- The most intense maxima are still given by

$$y = \frac{m \lambda D}{d}$$

- But now there are also secondary maxima related to the larger spacing $2d$

$$y = \frac{m \lambda D}{2d}$$
4-slit interference

- The distance between each is d.
- The most intense maxima are still given by $y = \frac{m \lambda D}{d}$.
- But now there are also secondary maxima related to the larger spacing $3d$.
- The primary maxima gets narrower as the number of slits increases.
Diffraction Gratings (Figs. 37-16, 17)

- Increase # of slits from 2 to a large number
- Bright fringes in intensity plot are now very narrow (called lines) and separated by wide dark regions
- A mask that contains a large number of slits at equal separation distances, \(d \), is called a diffraction grating
Diffraction Gratings (Figs. 37-16, 17)

- The equation for the positions of the maxima are the same as those for two slits at distance d

$$d \sin \theta = m \lambda$$

- Grating spacing is

$$d = \frac{\text{Total Width}}{\text{Num. Rulings}} = \frac{w}{N}$$
Diffraction Gratings (Fig. 37-22)

- Angle θ from central axis to any line depends on wavelength of light λ
 - Larger λ, bigger θ

$$d \sin \theta = m \lambda$$

- Light from a given source can be split into its emission lines (below are lines for hydrogen)
 - Use this to determine types of gases in stars

Violet=430 nm Red=690 nm
Diffraction

- Do we still get an interference pattern if we have only one slit?

- Yes, see a bright central maximum and then other less bright spots on the sides (side maxima) separated by dark minima
 - Caused by interference of wavelets from same wavefront going through slit
Diffraction

- **Interference** –
 - Combining waves from small number of coherent sources – double-slit experiment with slit width much smaller than wavelength of the light

- **Diffraction** –
 - Combining of large number of wavelets from single wavefront – as in single slit experiment

- **Diffraction and interference are both**
 - the result of combining waves with different phases at a given point
 - Usually present simultaneously

- Example see photo 37-14 p.902