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Experiment 1 

Simple Measurements and Error 
Estimation 

Reading and problems (1 point for each 
problem): 
Read Taylor sections 3.6-3.10  
Do problems 3.18, 3.22, 3.23, 3.28  

Experiment 1 Goals 
1. To perform simple measurements as accurately as possible and to 

estimate uncertainties in these measurements. 
2. To gain practice in computing propagation of errors. 
3. To investigate the distribution of random errors. 

Theoretical introduction 
The main purpose of this experiment is to introduce you to methods of dealing 
with the uncertainties of the experiment (for more background, see the 
Appendix). The basic procedures to correctly estimate the uncertainty in the 
knowledge of the measured value (the error of the measurement) include:  

• Estimation of the uncertainty in the values directly measured by, or 
read from, the measurement device (directly measured quantities, 
Taylor, Chapter 1); 

• correct treatment of the random errors of the experiment (Chapters 4 
and 5); 

• calculation of the errors of the quantities which are not measured 
directly (the propagation of errors, Chapter 3); 

• rounding off the insignificant digits in the directly measured and 
calculated quantities (Chapter 2 and the Appendix to this lab). 

Preliminary discussion (15-30 minutes). 
Before the lab, you are asked to read and understand the theoretical material 
for this lab (Exp1 and Taylor). Before the experiment starts, your group needs 
to decide which information will be relevant to your experiment. Discuss what 
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you will do in the lab and what preliminary knowledge is required for 
successful completion of each step.  

Think about organizing your work in an efficient way. How should you use 
Kgraph to expedite your calculations and unit conversions (when necessary)?  

Questions for the preliminary discussion. 

1. Suppose during each of several measurements we find a value, which lies in 
the same interval of the scale of the measuring device. For example, each time 
we measure the length to be between 176 and 177 mm, with the length 
between the ticks on the ruler equal to 1 mm. How do we estimate an 
uncertainty in our the measured length in this case?  

2. Now suppose we use a much more precise device (say the laser 
micrometer). Due to a higher precision, this device can resolve the miniscule 
changes in the length due to the random mechanical deformations of the 
object, and in each measurement we will see the slight unsystematic changes 
in the observed length. From these data, how can we find the most likely value 
of the length? How can we estimate the spread in the measurements? Which 
formulas will we use?  

3. Next, we are going to find out if the two independent measurements from 1 
and 2 are consistent with each other. Which procedure will we use? Is there a 
quantitative method to find out if two measured lengths are in agreement? Is 
there a quantitative method to estimate how certain our conclusion about the 
agreement or the disagreement of these measured values is?  

4. If we are going to use the results of our measurements to calculate some 
other quantities (e.g., calculate the density of the rod using the measurements 
of its dimensions and the mass), which formulas will we use to calculate the 
mean values and the uncertainties of these quantities?  

5. In our calculation, the calculator (computer) will typically return the results 
with as many digits as possible. However, some of these digits will be 
produced from the part of the input number, which we do not know, and, 
correspondingly, they will have no real meaning. Which procedure will you 
follow to systematically get rid of these insignificant digits?  

Density Measurements 

Introduction 

Your text (Sec. 1.3, p. 5) describes how Archimedes was able to determine the 
composition of a king's crown by measuring its density. We will attempt to 
perform a similar exercise, but we shall use copper instead of gold. Copper 
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has a density of 8.94 g/cm3at 20 degrees Celsius (C). We will consider later 
what to do if the temperature is not exactly 20 degrees C. Your task today is to 
measure the density, calculate the appropriate uncertainties and decide 
whether your measurement agrees with the given value.  

Part A 

In our lab, we will use rulers, vernier calipers and micrometers. Discuss in 
your group the following questions:  

a) Which of these instruments is the most precise; the least precise? How do 
you know? In particular, is the caliper more precise than the ruler? Hint: try 
to understand if the moving scale on the caliper (the vernier) can be used to 
increase the precision of the length measurement compared to a simple ruler. 
If you don’t see how to use it, you may refer to the Appendix. 

b) Write down the uncertainties of the length measurements with each of these 
instruments.  

Use the ruler to measure the three dimensions of the block. Repeat these 
measurements with the vernier caliper and the micrometer. Assign 
uncertainties to your measurements. For each instrument, measure the length 
with the highest precision possible.  

Measure the mass of your block and estimate its uncertainty.  

For the ruler measurement, compute the volume of the block and its 
uncertainty. Make two estimates of your uncertainty using alternatively Eqs. 
3.18 and 3.19 on p. 61 of the text. Which estimate is more appropriate for this 
calculation? Why?  

Pay attention to the units. In the calculation, follow the rules for rounding off 
the insignificant figures. If the calculation is done correctly, the smallest 
significant figure in the final mean value will be of the same order as the final 
uncertainty.  

Compute the density and its uncertainty. Use Eq. 3.18 on p. 61 of Taylor.  

Calculate the density and its uncertainty using the data obtained with the help 
of the caliper and micrometer.  

Part B 

Answer the following questions:  
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1. Is your value consistent with the density of pure copper? Could it, 
instead, be a copper alloy? (Copper alloys (e.g. bronze and brass) have 
densities which can range from 7.5 g/cm3 to 10 g/cm3.). For more 
information, see the appendix on Alloy Densities. Try to figure out 
how to justify your conclusion quantitatively. (Hint: compare the 
discrepancy between the theoretical and experimental values with 
some other number). 

2. In the computation of density, what were the greatest sources of 
uncertainty? Which were the smallest? 

3. If you had made only one set of measurements with a ruler, would you 
arrive to the same answer for the Question 1? Why? 

4. What systematic errors might we be overlooking? Are any of these big 
enough to affect your estimate of uncertainty? Consider, for instance, 
the temperature dependence of the density of metal, irregularities in 
the shape of the block, and any other errors you can think of. 

Useful Information 

If a metal is heated, its length increases by an amount ∆L given by:  

TLL ∆⋅⋅α=∆  

where L is the original length, ∆T is the increase in temperature, and α is the 
thermal coefficient of linear expansion. For aluminum, α = 23 x 10-6 (per 
degree C). For steel, α = 11 x 10-6  (per degree C). For copper, α = 17 x 10-6 
(per degree C).  

Part C 

Use the density measurement to determine the material of 3 other unknown 
objects. Again, present the numeric arguments supporting your conclusions.  

In your report, include 3 measured densities of the rectangular block and the 
densities of 3 unknown objects, as well as the relevant uncertainties.  

Random Uncertainties 
In this part of the experiment we ask you to perform one of the simplest of 
repetitive measurements in order to investigate random and systematic errors.  

Part A: Time Measurements 

At the front of the room is a large digital clock that is supposed to count at a 
constant rate of one count per second. Assume that it does count at a constant 
rate, but do not assume that the stated rate of one count per second is correct. 
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The clock will count from 1 to 20, blank out for some unspecified length of 
time, and then begin counting again. To measure the clock's count rate, you 
will be given a timer whose systematic error is less than 0.001 seconds for 
time intervals of ten seconds or less. However, you will be relying on hand-
eye coordination, which means your measurements will have random 
uncertainties. Your reaction time is unavoidably variable. You may also be 
systematically underestimating or overestimating the total time.  

1. Choose a counting interval at least 10 counts long and time 25 of them. One 
person should time while the other records the data on the data sheet 
belonging to the person timing. To avoid an unconscious skewing of data, the 
person timing should not look at the data sheet until all 25 measurements have 
been recorded. This is essential; otherwise, you will introduce a bias into your 
measuring procedure! Make a few practice runs before taking data. Also, 
avoid starting a timing interval on the first count. Use the first of three counts 
to develop a tempo with which to synchronize your start.  

2. Exchange places with your partner, and time 25 more counting intervals. 
Thus, each person will have a data sheet with 25 timings recorded on it.  
   

Part B: Data Analysis 

1. From your data set of 25 measurements compute the average or "mean" 

time per count
∑

=
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, where the Ti  represents single measurements of 
the time per count and N = 25, the number of measurements. Using this value 
of T  to compute the standard deviation, σ , defined as:  
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and from that, the standard deviation of the mean defined as:  

Nm
σ

=σ
 

Show the calculations explicitly for the first 5 measurements, but you may use 
a calculator or the computers for the full 25. Read the statistics section in the 
Kgraph manual.  

Make a bin histogram from your twenty-five measurements. The x axis should 
represent the time T. It should be divided into bins, each with a width of about 
∆ = 0.4σ. The y axis should be nk, which is defined to be the number of 
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measurements which fall in the kth time bin. Data might fall right on the 
border of two bins. Make a convention for placing these points such that they 
are always placed in either the higher or the lower bin. Remain consistent with 
your handling of these points. Clearly mark the points of  T and ±σ for your 
measurements. The quantity can be shown to be the best estimate of your 
measurement and the region included in the range ±σ should contain about 
68% of your data points if your errors are random and consequently the 
distribution of your measurements is normal or Gaussian. Draw an appropriate 
Gaussian distribution given by  

g(T,Tmean,σ) = gmaxexp(-(T-Tmean)2 /(2σ2)), 

on your stack histogram, where Tmean and σ are your best estimates for the 
mean and standard deviation of your time measurements. (Here, choose an 
appropriate estimate for gmax . Calculate g(T,Tmean,σ) at five points, plot them 
by hand on your histogram plot and connect these points with a smooth 
curve.) With a finite number of measurements such as 25, your distribution 
may not resemble the expected "bell" shape to a great degree. The standard 
deviation of the mean σm , is the best estimate of the uncertainty in the 
measurement of the mean. Note that, unlike the standard deviation, this 
uncertainty can be made arbitrarily small by taking a sufficiently large number 
of measurements.  

Part C: Conclusions 

1. Does a significant systematic error exist? In other words, is there a 
significant discrepancy in the time measured by the large clock? Note that we 
have already made the hypothesis that the large digital clock is running 
correctly, and now we want to check whether this hypothesis is in agreement 
with our statistical analysis.  

2. Using an equation similar to Eq. 5.67 on p. 150 of your text, compute the 
following quantity for your 25 measurements:  

m

expTT
t

σ

−
=

 

where Texp is the expected time if the clock were running correctly. t has the 
meaning of the number of the standard deviations of the mean needed to cover 
the difference between the mean and expected times.  

3. Assuming that your measurements follow a normal distribution, calculate 
the probability P of obtaining a result that differs from Texp by t or more. In 

other words, what is the probability 1-P that mexp tTT σ>− ? You may need 
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to use the table on p. 286 of your textbook, which gives the probability P 
that 

mexp tTT σ<−  for the Gaussian distribution with the standard 

deviation σm, and for any given t.  

4. Is the discrepancy significant or not? This is somewhat a matter of opinion 
since we must decide what is significant. If the probability is less than 5%, the 
probability is "unreasonably" small and discrepancy is significant. On the 
other hand, if the probability is greater than approximately 32%, the 
probability is "rather large", and the discrepancy is not significant. In this 
context, state your conclusions clearly.  

5.How many σm is the discrepancy expTT −  when the probability P=5%; 
when P=32%? From this and the previous answer, formulate a "rule of 
thumb" allowing you to determine if the discrepancy is significant or not. 
(Hint: a discrepancy wouldn't be that significant if a third of the time you 
observe one.)  

6. Suppose you had recorded only your first 5 measurements. What would you 
have concluded about the existence of a significant discrepancy? Were the 
remaining 20 measurements necessary in your opinion? Explain.  

Structure of the report 
A good report should include:  

a) A short explanation of the goals of this lab (not just a copy from the 
beginning of this write-up); 

b) A description of what you did, including the representative samples of the 
measured data and calculations, the discussion of the most important results 
you obtained, etc.  

c) Answers to all the questions; 

d) A brief conclusion or summary. 

e) Please also list at least three things that your group did well during this lab, 
and at least one thing that could be improved.  

Appendices 

Appendix 1. Theory of Uncertainties 
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Contrary to the naïve expectation, the experiments in physics typically involve 
not only the measurements of various quantitative parameters of nature. In 
almost all the situations the experimentalist has also to present an argument 
showing how confident she is about the numeric values obtained. Among 
other things, this confidence in the validity of the presented numeric data 
strongly depends on the accuracy of the measurement procedure. As a simple 
example, it is impractical to measure a mass of a feather using the scale from 
the truck weigh station, which is hardly sensitive to the weight less than a few 
pounds. 

Another challenge has to be met when the scientist tries to compare the results 
of her experiment with the data from another experiments, or with the 
theoretical predictions. Since the conditions of the measurement almost 
always vary from an experiment to an experiment, and since they are also 
different from the idealized situation of the theoretical model, the compared 
values most likely will not match each other exactly. The task is then to figure 
out how important the factors creating this discrepancy are. If these factors are 
stable (do not change from measurement to measurement) and well 
noticeable, they are called systematic errors. If, on the contrary, these factors 
are more or less random and on average compensate each other, they are 
called random, or statistic errors. An important fact is that the uncertainty due 
to the random errors can be reduced by increasing the number of 
measurements.  

Appendix 2. Significant figures 
In the calculations, it is always important to distinguish significant figures in 
the presented numbers from insignificant. The following simple rules will 
help you in this task.  

1. Since the error of the measurement is only an approximate estimate of the 
uncertainty of the measurement, we do not need to keep more than one or two 
largest digits in it. The smallest digit in the mean value should be of the same 
order as the smallest significant digit of the uncertainty. Examples:  

Incorrect  Correct 

517.436 ± 0.1234 517.4 ± 0.1or 517.44 ± 0.12 

24.3441364 ± 0.002 24.344 ± 0.002 

12385 ± 341 12400 ± 300 or 12390 ± 340 

2. When adding or subtracting two numbers, the result should have the same 
number of the significant digits after the decimal point as the least precise 
summand. Example:  
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23.5527824.3445.517 =+  

3. When multiplying or dividing, the result should have the same total number 
of the significant digits as the least precise multiplier. Example:  
   
   

1234.3 x 23.45≈28940 

4. For other operations (raising to power, square root, exponent) the rule is 
similar to the one for the multiplication and division: you should keep as 
many significant digits in the final result as you had in the input. Example:  

889.1567.3 ≈  

Appendix 3. Alloy Densities  
Below is a table of typical values of density (specific gravity) for various 

commercial metals and alloys.  Units are g cm –3 or kg m –3 . 
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Appendix 4. THE VERNIER CALIPER 
 
A vernier caliper consists of a high quality metal ruler with a special vernier scale attached 
which allows the ruler to be read with greater precision than would otherwise be possible.  
The vernier scale provides a means of making measurements of distance (or length) to an 
accuracy of a tenth of a millimeter or better.  Although this section will be devoted to the use 
of the vernier caliper, it should be noted that vernier scales can be used to make accurate 
measurements of many different quantities.  In the future, you will also use an instrument 
with a vernier scale to make precise readings of angular displacements. 
 
 

JAWS

SAME DISTANCE AS
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VERNIER SCALE

RULE

0 108642

0

0 5 10 15 20 25

1 2 3 4 5 6
1

7
2

987654321

 
 

Figure 1:  Vernier Caliper 
 
 
Looking at the vernier caliper in Fig. 1, notice that while the units on the rule portion are 
similar to those on an ordinary metric ruler, the gradations on the vernier scale are slightly 
different.  The number of vernier gradations is always one more than the number on rule for 
the same distance.  The line on the vernier which is aligned with one on the rule tells us the 
fraction of the units on the rule. For example, in Fig. 1 the vernier reads 1.440 cm or 0.567 
in. 
 
To use the vernier caliper: 
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(1) Roll the thumb wheel until the jaws are completely closed (touching each other). Now 
check whether the caliper is reading exactly zero.  If not, record the caliper reading, and 
subtract this number from each measurement you make with the caliper. 

 
(2) Use either the inside edges of the jaws, or the outside edges of the two prongs at the top 

of the caliper to make your measurement.   Do not use the tips of the prongs.  Roll the 
thumb wheel until these surfaces line up with the end points of the distance you are 
measuring. 

 
(3) To read the caliper: 
 
 (a) record the numbers which correspond to the last line on the rule which falls before 

the index line on the vernier scale.  On the following page, this would be 32 since 
the index line falls just  after the 32 cm line. 

 
 (b) count to the right on the vernier scale until you reach a vernier line which lines up 

with a line on the rule and record the number of this vernier line as your last digit. 
on the following page it is the ninth vernier line which is aligned with one on the 
rule, so the whole distance is 32.9 cm. 

 
The following pages show six vernier scales, similar to that on the vernier caliper, which will 
allow you to test your ability to read a vernier caliper. 
 

Introduction  Page 11 



Undergraduate Physics Labs, Dept. of Physics & Astronomy, Michigan State Univ. 

 
 

30 40

0 2 4 6 8 10

30 40

0 2 4 6 8 10

0 2 4 6 8 10

20 30 40

50

0 2 4 6 8 10

20 30 40

50 20 30 40

20 30 40

0 2 4 6 8 10

0 2 4 6 8 10

Ans:  32.9

Ans:  32.1

Ans:

Ans:

Ans:

Ans:

 

20 30 40

20 30 40

0 2 4 6 8 10

0 2 4 6 8 10

Ans:

Ans:  

Introduction  Page 12 



Undergraduate Physics Labs, Dept. of Physics & Astronomy, Michigan State Univ. 

Introduction  Page 13 

 
 

 


	Experiment 1
	Simple Measurements and Error Estimation
	Reading and problems (1 point for each problem):
	Experiment 1 Goals
	Theoretical introduction
	Preliminary discussion (15-30 minutes).
	Questions for the preliminary discussion.

	Density Measurements
	Introduction
	Part A
	Part B
	Useful Information
	Part C

	Random Uncertainties
	Part A: Time Measurements
	Part B: Data Analysis
	Part C: Conclusions

	Structure of the report
	Appendices
	Appendix 1. Theory of Uncertainties
	Appendix 2. Significant figures
	Appendix 3. Alloy Densities


