
Experiment 3

The Simple Pendulum

Reading and problems (1 point for each problem)

Taylor,  Sections 5.1, 5.2, 5.3 and 5.4; Problems 4.16, 4.23, 5.4 and 5.18.

Goals

1. To improve measurement accuracy by averaging
2. To study the amplitude and mass dependence of the period of a pendulum
3. To measure g with the simple pendulum
4. To study energy conservation
5. To examine the propagation of error in derived physical quantities

Theoretical Introduction

Part A

The simple pendulum shown below consists of an object of mass m suspended from a
pivot by a massless string. The distance from the point of pivot to the center of mass of
the ball, or "bob", is designated by L in the figure. When the ball is displaced from its
resting position the string makes an angle Θ  with the vertical. The component of the
gravitational force in the tangential x-direction acts to restore it to its equilibrium
position. Thus the restoring force is:

                                             F mgx = − sin Θ                                           (1)
The tension of the string T, in the direction toward the point of suspension, is equal in
magnitude and opposite in direction to the component of the gravitational force acting in
that direction.

The mass is accelerated only in the tangential direction perpendicular to the string. Using
Newton’ s Second Law, F= ma, and ∆x = Lsin∆Θ  ≅ L∆Θ    (see Eq. 5), the relation
between the small tangential displacement ∆x and the corresponding change in angle ∆Θ ,
one finds:
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Imagine a pendulum with a mass at the end of a string of length L swinging by an angle
Q  from the vertical.

Inserting the expression for the restoring force, the equation of motion becomes:
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For small angles Θ , we may expand sinΘ  as follows
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To simplify Eq. 4 we assume Θ  is small and keep only the first term to obtain:
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where the solution to differential equation (6) is:           
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Because the sine function repeats itself whenever its argument changes by 2π, the time
for one period T is given by:
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Thus as long as the small angle approximation of Eq. 5 is valid, the period is independent
of the amplitude Θ ο  and mass m. Measurement of the period T and the length L permit a
determination of the gravitational constant g.  If Θ ο  is not small enough, Eq. 6 will not
be valid, the period will depend on Θ ο , and will increase with the amplitude (see
Appendix A).

Part B
For a pendulum swinging back and forth, the mechanical energy E shifts between kinetic
and potential energy but remains constant (if no damping occurs):

               E K U= +                                                                                 (11)

               U mgh=                                                                                   (12)
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Here, h is the vertical displacement from its equilibrium position and v is the velocity of
the bob. When the bob is at its maximum amplitude, all the energy is potential and v = 0.
The bob has greatest speed at its lowest point, hence all the energy is kinetic and U = 0 .
Conservation of mechanical energy for these two instants is:

Ko + Uo = Kmax + Umax                                                          (14)

where the subscript o denotes the static equilibrium position and max stands for
maximum point of oscillation.
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Solving Eq. (15) for v2 we obtain
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Experimental Procedures

Part A
A bob is suspended from a pivot by a string. A protractor below the pivot allows us to set
the initial pendulum amplitude by setting the angle.   You will measure the period of the
pendulum by:
1. Manual timing with a digital clock
2. Automatic timing with a photogate timer.
You then should be able to compute g from the period of the pendulum and the pendulum
length.  Measure the length L between the pivot of the pendulum and the center of mass



of the bob as accurately as possible. You may need several measurements, or
measurement strategies, to find L. Assess the role of statistical and systematic
uncertainties in your value for L.

Questions for preliminary discussion
1. Verify by direct substitution that Eq. (7) is a solution of Eq. (6).
2. Should the period of the pendulum depend on the mass?
3. Should the period of the pendulum depend on its amplitude?
4. What is the criterion for a small amplitude oscillation?
5. Draw a diagram of forces acting on the bob.
6. What component of the force causes oscillation?
7. Discuss the sources of systematic and random errors in this experiment.

Manual measurement of T
It is most accurate to begin timing the swing of the pendulum at its lowest point because
then the ball moves most quickly and takes the least time to pass by. The amplitude of the
swing should be large in order to increase the speed of the pendulum at that point. On the
other hand, Θ  must be kept small enough that the approximation sin Θ ο @ Θ ο remains
valid. As a compromise, take the initial amplitude to be about 0.1 radian (∼6 ο ). Indicate
on your data sheet your calculation to set Θ ο  to 0.1 radian.

1.  Using the timer, measure the duration of 25 complete cycles ten times, starting and
stopping the measurements at the lowest point of the swing.

2.  From these ten measurements, calculate the period (mean) and the standard deviation
of the mean. You should enter the data into Kgraph. Do not round off your numbers
too early in your calculations or you may lose accuracy in your final result. Calculate
g and its uncertainty with the use of Eq. 10.

Automatic Measurement of T
1. Set the photogate on PEND position. Practice timing the period using the photogate a

few times. How many periods does the photogate measure? From three measurements
of the period with the photogate, calculate the mean period and the standard deviation
of the mean. Calculate g and its uncertainty.

2. Change the bob and find the period for three other masses. Are your results consistent
with Eq. 10?

3. Reduce the length of the string to 1/2, 1/3, 1/4, and 1/5 of its length by moving the
middle support.  Measure the period and perform a least-squares fit to the data by
plotting T 2  vs. L . Find g and its uncertainty.

4. An oscillating solid rod with uniform cross-section also forms a pendulum.  If

suspended at one end, its period is given by T
L
g

= 2
2
3

π .  Repeat the procedure

above in (1) for the solid rod pendulum. See Appendix B for a derivation of this
result.



Amplitude dependence of the period
If the amplitude of oscillation of a pendulum is not sufficiently small, its period will
depend on amplitude.  Thus Eq. 9 will not be valid.  See Appendix A for a brief
discussion.

Using the photogate timer, measure the period of the pendulum for a series of initial
angles.  Begin with 30° (about 0.5 radians) maximum and repeat for approximately
25 20 15 10 6ο ο ο ο ο, , , , . Calculate the ratio T T( ) /Θ ο , where T( )Θ is defined by Eq. A3 and

To is the small amplitude period.   Perform a linear least-squares fit of the data to T/To vs.
Θ 2 (Θ  in rad).  Compare your results with the theoretical value A = 1/16 from
T
T

A
ο

= +1 2Θ  . It is not necessary to do an extended uncertainty analysis here.

Part B

Conservation of Energy
In this experiment, we will test the idea of conservation of energy by measuring the
velocity of the bob (kinetic energy) as a function of its release height (potential energy).
Measure the diameter of the bob with maximum accuracy. Set the photogate in Gate
position. Determinethe vertical displacement from equilibrium h for the angles Θ = 30ο  to
5o at 5o intervals. When the bob passes the equilibrium point, the photogate timer
measures the time interval over which the bob interrupts the light.  Calculate vo and
verify that vo

2 = 2gh. Plot 1/ 1 / )∆t 2 vs. h (Eq. 16 ).  Perform a linear least-squares fit to the
data to obtain g.  It is not necessary to do an extended uncertainty analysis here, either.

Phase Space Portrait
When the bob is released from an angle Θ , the pendulum oscillates between + Θ  and
− Θ . In one cycle, the bob passes each point twice. The momentum p  at these two
instants is p mv= +  and p mv= − . Make a phase space plot with the orthogonal axes
p and Θ . For example, when Θ = =30ο ,U mgh  and p = 0 . When Θ = 0ο , p mv= −

(left direction as negative); at Θ  = -30o, p = 0 ; and at Θ = 0ο , p = +mv.  Connect these
four points with smooth line, forming an ellipse. Repeat for smaller angles. Now, imagine
that the pendulum's amplitude is continuously decreasing to zero.  Sketch the diagram for
this situation. For a pendulum that is being damped, the diagram encompasses its
complete dynamics, from start to finish. Explain this in your report.

Damped Pendulum
Finally, we consider the damped pendulum. Here, frictional losses decrease the energy of
the pendulum as a function of time.  To find the functional form of the energy decay, you
will measure the peak velocity of the pendulum vs. time.  Set L to about 20 cm and the
photogate timer to GATE with MEM off.  Take a measurement of the bob velocity at 50 s
intervals, determined by reading the manual timer.  Take at least 10 readings.



Calculate E and plot E vs. t .Can you make a transformation so that a straight line results?
Can you define a characteristic time for the energy decay? Explain the graph in your
report.

Questions
Address the following questions in your report:

1.  What is the point of measuring 250 cycles (25 x 10) in Part A? Would it have been as
accurate to measure one cycle 250 separate times?

2.  Which value of g is more accurate, the one obtained by hand-timing or obtained with
the photogate?

3.  Assuming that your uncertainties are random, how many hand-timing measurements
should be done to make the two sets of measurements equally precise?

4.  Which quantity, T or L, makes the larger contribution to the fractional uncertainty in
g? Does this suggest a way to improve the experiment?

5.  Compare g with 9.804 m/ s2 . Do you have a significant discrepancy? Discuss this
quantitatively from a statistical point of view.

6.  In part B, what might influence your experiment, and verification of v2 = 2gh?
Compare your calculation for g  with the accepted value.

7.  What is the major source of error in part B in testing energy conservation?

Appendix A

The Finite Amplitude Pendulum
To solve Eq.4 exactly,
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one may formally write the solution for the period T as an integral over the angle Θ :
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Integrals of this form belong to a class of elliptic integrals which do not have closed form
solutions. If the angle Θ ο  is sufficiently small, solutions to any desired degree of
accuracy can be obtained by doing series expansions in the angles. The result is:
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Note that the period increases as the amplitude increases.



Appendix B

Solid Rod Pendulum
For a physical pendulum like a rod pivoting at one end, a restoring torque τ  reduces the
angle when the pendulum is displaced from its equilibrium.

                 τ = − ( sin )( )mg hΘ                                          (B1)

where mg sin Θ is the tangential component of the force and h is  the distance from the
pivot to the center of mass. For small angles Eq. B1 becomes:

   τ ≈− ( )mgh Θ                                                                                 (B2)

which is the angular form of the Hooke’s law.  Writing the differential form of the torque
and setting it equal to Eq. B2, we obtain the equation of motion:
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or
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where I = Σmr2  is the moment of  inertia.  The solution to (B4) is :
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 so that the time for one period is

                T
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For the rod I  = 
1
3

2mL  and the center of mass distance h = L/2 where L  is the length and

m  is the mass of the rod. Therefore, we find that
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