Pratt, Scott -Introductory Physics II Spring, 1998 Section 999 FINAL EXAM-CAPA ID is 7997 - 1. [3pt] Consider the diagram above. (For each statement select T True, F False). - A) If a car battery is connected between a and b, an AC signal will be generated between c and d. - B) This device could be used as an AC-DC converter. - C) The three circuit elements are a resistor, a capacitor and a transistor. - 2. [3pt] Consider three charges arranged in an equilateral triangle of length $L=1.30\times 10^{-2}~m$. How much work (in J) is required to move the negative charge to infinity? DATA: $q=3.10\times 10^{-6}~C$. - A) 2.08×10^1 E) 3.39×10^1 - B) 2.35×10^1 F) 3.84×10^1 - C) 2.66×10^1 G) 4.33×10^1 - D) 3.00×10^{1} - H) 4.90×10^{1} - V(x) - **3.** [3pt] Consider the plot of electric potential vs. position above. (For each statement select T True, F False). - A) The electric field at b is zero. - B) The electric field at a is zero. - C) An electron at c experiences a force to the left. - **4.** [3pt] Consider two large oppositely charged parallel plates separated by $1.30 \times 10^{-3}~m$. A potential difference of 60 V is applied between the plates. What is the electric field (in V/m) between the plates? - A) 4.62×10^4 - B) 6.14×10^4 - C) 8.16×10^4 - 10^4 D) 1.09×10^5 - E) 1.44×10^5 F) 1.92×10^5 - G) 2.55×10^5 - H) 3.40×10^5 - 5. [3pt] If an electron is released at rest from the negative plate, what is the electron's velocity (in m/s) when it reaches the positive plate. DATA: $e = -1.602 \times 10^{-19} \ C$, $m_e = 9.11 \times 10^{-31} \ kg$. - A) 1.95×10^6 - B) 2.60×10^6 - C) 3.45×10^6 - D) 4.59×10^6 - E) 6.11×10^6 - F) 8.13×10^6 - G) 1.08×10^7 - H) 1.44×10^7 - **6.** [3pt] Consider the circuit above. What is the effective resistance (in Ω) seen by the battery? DATA: $R_1 = 13.0 \Omega$, $R_2 = 52.0 \Omega$, $R_3 = 52.0 \Omega$. - A) 2.39×10^{1} - B) 2.70×10^{1} - C) 3.05×10^{1} - D) 3.45×10^{1} - E) 3.90×10^{1} - $F) 4.41 \times 10^{1}$ - G) 4.98×10^{1} - H) 5.63×10^{1} - 7. [3pt] Consider the sections of two circuits illustrated above. (Give ALL correct answers, i.e., B, AC, BCD...) - A) C_{ab} is always less than or equal to C_1 . - B) C_{cd} is always less than or equal to C_3 . - C) After connecting a and b to a battery, and waiting a sufficient time, Q_1 always equals Q_2 . - **8.** [3pt] Consider the two positive charges, a and b, and a wire carrying a current I directed into the page as shown. They are in the presence of a constant magnetic field. (For each statement select T True, F False). - A) The wire experiences no magnetic force. - B) Particle b feels no magnetic force. - C) Particle a will move in a circular orbit. - **9.** [3pt] A circular coil (radius r=0.023~m) has 25 turns and is connected to a resistor $R=9.0~\Omega$. A magnetic field, directed perpendicular to the loop, rises from zero to 0.23 T in 0.025 s. What is the average voltage (in V) around the resistor during that time? - A) 2.87×10^{-1} - B) 3.82×10^{-1} - C) 5.08×10^{-1} - D) 6.76×10^{-1} - E) 8.99×10^{-1} - F) 1.20 - G) 1.59 - H) 2.12 10. [3pt] What is the r.m.s. current (in amps) in the circuit above? DATA: $L = 2.31 \times 10^{-1} H$, $R = 55 \Omega$, $V_{rms} = 110$ V, The frequency of the source is 60 Hz. - A) 1.67×10^{-1} E) 7.37×10^{-1} - B) 2.42×10^{-1} - C) 3.51×10^{-1} - D) 5.08×10^{-1} - F) 1.07 - G) 1.55 - H) 2.25 11. [3pt] An object whose height is 2.1 cm is placed 16.6 cm from a converging lens with a focal length of 8.3 cm. What is the height (in cm) of the image? - A) -2.26×10^{-1} E) -9.99×10^{-1} - B) -3.28×10^{-1} F) -1.45 - C) -4.75×10^{-1} (G) -2.10 - D) -6.89×10^{-1} H) -3.04 12. [3pt] An object is placed half way between a concave mirror and its focal point. (For each statement select T True, F False). - A) The image is inverted. - B) The image is larger than the object. - C) The image is virtual. 13. [3pt] An electron has a wavelength of 2.89×10^{-10} m. What is its kinetic energy? Give your answer in eV. - A) 1.54×10^{1} - B) 1.80×10^{1} - C) 2.11×10^{1} - E) 2.88×10^{1} - F) 3.37×10^1 - - G) 3.95×10^{1} - H) 4.62×10^{1} 14. [3pt] The electron in a hydrogen atom in its ground state has (only one answer is correct) - A) zero kinetic energy - B) zero ionization energy - C) zero spin angular momentum - D) zero binding energy - E) zero orbital angular momentum 15. [3pt] 8.0 kilograms of neutral hydrogen atoms are converted to neutral 4He atoms via the reaction: $4p+4e \rightarrow {}^4$ He + 2e plus two neutrinos which can be treated as massless. How much mass (in kq) has been converted to energy? DATA: Proton mass = 1.007276 u, electron mass = 0.000549u, Helium nucleus mass = 4.001506 u. - A) 1.88×10^{-2} - B) 2.73×10^{-2} - C) 3.96×10^{-2} - D) 5.74×10^{-2} - E) 8.32×10^{-2} F) 1.21×10^{-1} - G) 1.75×10^{-1} - H) 2.54×10^{-1} - 16. [3pt] Consider the statements below regarding cosmology. (For each statement select T True, F False). - A) Hubble's constant is a measure of the brightness of the sun. - B) Three degree background radiation is a remnant of the big bang. C) The RED SHIFT refers to the leftist tendencies of mid-1930s physicists. 17. [3pt] Particle X, which has a mass 11 times that of a proton and is at rest, decays into a proton and antiproton with equal and opposite velocities. What is the velocity (as a fraction of c) of the proton? A) 9.83×10^{-1} E) 1.60 - F) 1.81 - C) 1.26 G) 2.05 - D) 1.42 H) 2.31 Dept. of Physics and Astronomy, Michigan State University CAPA@msu