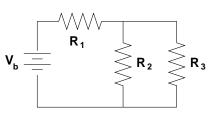
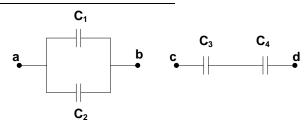

Pratt, Scott

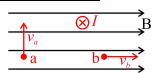
-Introductory Physics II Spring, 1998 Section 999 FINAL EXAM-CAPA ID is 7997



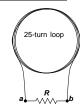
- 1. [3pt] Consider the diagram above. (For each statement select T True, F False).
 - A) If a car battery is connected between a and b, an AC signal will be generated between c and d.
 - B) This device could be used as an AC-DC converter.
 - C) The three circuit elements are a resistor, a capacitor and a transistor.


- 2. [3pt] Consider three charges arranged in an equilateral triangle of length $L=1.30\times 10^{-2}~m$. How much work (in J) is required to move the negative charge to infinity? DATA: $q=3.10\times 10^{-6}~C$.
- A) 2.08×10^1 E) 3.39×10^1
- B) 2.35×10^1 F) 3.84×10^1
- C) 2.66×10^1 G) 4.33×10^1
- D) 3.00×10^{1}
- H) 4.90×10^{1}
- V(x)
- **3.** [3pt] Consider the plot of electric potential vs. position above. (For each statement select T True, F False).
 - A) The electric field at b is zero.
 - B) The electric field at a is zero.
 - C) An electron at c experiences a force to the left.
- **4.** [3pt] Consider two large oppositely charged parallel plates separated by $1.30 \times 10^{-3}~m$. A potential difference of 60 V is applied between the plates. What is the electric field (in V/m) between the plates?
- A) 4.62×10^4
- B) 6.14×10^4
 - C) 8.16×10^4
- 10^4 D) 1.09×10^5
- E) 1.44×10^5 F) 1.92×10^5
- G) 2.55×10^5
- H) 3.40×10^5
- 5. [3pt] If an electron is released at rest from the negative plate, what is the electron's velocity (in m/s) when it reaches the positive plate. DATA: $e = -1.602 \times 10^{-19} \ C$, $m_e = 9.11 \times 10^{-31} \ kg$.
- A) 1.95×10^6
- B) 2.60×10^6
- C) 3.45×10^6
- D) 4.59×10^6

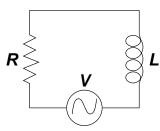
- E) 6.11×10^6
- F) 8.13×10^6
- G) 1.08×10^7
- H) 1.44×10^7



- **6.** [3pt] Consider the circuit above. What is the effective resistance (in Ω) seen by the battery? DATA: $R_1 = 13.0 \Omega$, $R_2 = 52.0 \Omega$, $R_3 = 52.0 \Omega$.
- A) 2.39×10^{1}
- B) 2.70×10^{1}
- C) 3.05×10^{1}
- D) 3.45×10^{1}


- E) 3.90×10^{1}
- $F) 4.41 \times 10^{1}$
- G) 4.98×10^{1}
- H) 5.63×10^{1}

- 7. [3pt] Consider the sections of two circuits illustrated above. (Give ALL correct answers, i.e., B, AC, BCD...)
 - A) C_{ab} is always less than or equal to C_1 .
 - B) C_{cd} is always less than or equal to C_3 .
 - C) After connecting a and b to a battery, and waiting a sufficient time, Q_1 always equals Q_2 .



- **8.** [3pt] Consider the two positive charges, a and b, and a wire carrying a current I directed into the page as shown. They are in the presence of a constant magnetic field. (For each statement select T True, F False).
 - A) The wire experiences no magnetic force.
 - B) Particle b feels no magnetic force.
 - C) Particle a will move in a circular orbit.

- **9.** [3pt] A circular coil (radius r=0.023~m) has 25 turns and is connected to a resistor $R=9.0~\Omega$. A magnetic field, directed perpendicular to the loop, rises from zero to 0.23 T in 0.025 s. What is the average voltage (in V) around the resistor during that time?
- A) 2.87×10^{-1}
- B) 3.82×10^{-1}
- C) 5.08×10^{-1}
- D) 6.76×10^{-1}

- E) 8.99×10^{-1}
- F) 1.20
- G) 1.59
- H) 2.12

10. [3pt] What is the r.m.s. current (in amps) in the circuit above? DATA: $L = 2.31 \times 10^{-1} H$, $R = 55 \Omega$, $V_{rms} = 110$ V, The frequency of the source is 60 Hz.

- A) 1.67×10^{-1} E) 7.37×10^{-1}
- B) 2.42×10^{-1}
- C) 3.51×10^{-1}
- D) 5.08×10^{-1}

- F) 1.07
- G) 1.55
- H) 2.25

11. [3pt] An object whose height is 2.1 cm is placed 16.6 cm from a converging lens with a focal length of 8.3 cm. What is the height (in cm) of the image?

- A) -2.26×10^{-1} E) -9.99×10^{-1}
- B) -3.28×10^{-1} F) -1.45
- C) -4.75×10^{-1} (G) -2.10
- D) -6.89×10^{-1} H) -3.04

12. [3pt] An object is placed half way between a concave mirror and its focal point. (For each statement select T True, F False).

- A) The image is inverted.
- B) The image is larger than the object.
- C) The image is virtual.

13. [3pt] An electron has a wavelength of 2.89×10^{-10} m. What is its kinetic energy? Give your answer in eV.

- A) 1.54×10^{1}
- B) 1.80×10^{1}
- C) 2.11×10^{1}

- E) 2.88×10^{1}
- F) 3.37×10^1
- - G) 3.95×10^{1}
- H) 4.62×10^{1}

14. [3pt] The electron in a hydrogen atom in its ground state has (only one answer is correct)

- A) zero kinetic energy
- B) zero ionization energy
- C) zero spin angular momentum
- D) zero binding energy
- E) zero orbital angular momentum

15. [3pt] 8.0 kilograms of neutral hydrogen atoms are converted to neutral 4He atoms via the reaction: $4p+4e \rightarrow {}^4$ He + 2e plus two neutrinos which can be treated as massless. How much mass (in kq) has been converted to energy? DATA: Proton mass = 1.007276 u, electron mass = 0.000549u, Helium nucleus mass = 4.001506 u.

- A) 1.88×10^{-2}
- B) 2.73×10^{-2}
- C) 3.96×10^{-2}
- D) 5.74×10^{-2}

- E) 8.32×10^{-2} F) 1.21×10^{-1}
 - G) 1.75×10^{-1}
- H) 2.54×10^{-1}
- 16. [3pt] Consider the statements below regarding cosmology. (For each statement select T True, F False).
 - A) Hubble's constant is a measure of the brightness of the sun.
 - B) Three degree background radiation is a remnant of the big bang.

C) The RED SHIFT refers to the leftist tendencies of mid-1930s physicists.

17. [3pt] Particle X, which has a mass 11 times that of a proton and is at rest, decays into a proton and antiproton with equal and opposite velocities. What is the velocity (as a fraction of c) of the proton?

A) 9.83×10^{-1}

E) 1.60

- F) 1.81
- C) 1.26 G) 2.05
- D) 1.42 H) 2.31

Dept. of Physics and Astronomy, Michigan State University CAPA@msu