-Introductory Physics II - EXAM 2 - Mar. 3, 1998 CAPA ID is **9160** 1. [3pt] After being in position a for a long time the switch is changed to position b at time t=0. If the voltage across the capacitor at t = 2.5 s is $V_c = .50V$, what was the voltage of the battery in volts? DATA: $C = 27.5 \times 10^{-3} F$. $R = 100 \Omega$. - A) 4.25×10^{-1} E) 6.93×10^{-1} - B) 4.80×10^{-1} - G) 8.85×10^{-1} - F) 7.83×10^{-1} - 2. [3pt] Consider a proton moving with a velocity v = 2.80×10^6 m/s perpendicular to a uniform magnetic field B = 1.10 T. What is the radius (in m) of the proton's circular orbit? DATA: $m_p = 1.67 \times 10^{-27} kg$. - A) 1.42×10^{-2} E) 2.65×10^{-2} - B) 1.66×10^{-2} F) 3.10×10^{-2} - G) 3.63×10^{-2} - 3. [3pt] A long cylindrical solenoid of length ℓ has N turns and carries a steady current I. Which of the following statements are true? (Give ALL correct answers) - A) If N is doubled while ℓ and I stay constant, the magnetic field inside the solenoid doubles. - B) Inside the solenoid, the magnetic field is directed along the axis of the solenoid. - C) If the current is doubled the magnetic field inside the solenoid doubles. - **4.** [3pt] A long straight wire carries a current I. (For each statement select T True, F False). - A) If one doubles the current the magnetic field at any point doubles. - B) At any point the magnetic field is directed directly TOWARD the wire. - C) The observed magnetic field falls by a factor of one fourth when the distance from the wire is doubled. - **5.** [3pt] A circular loop (radius r = 0.021 m) has a resistance $R = 13.0 \Omega$. A magnetic field, directed perpendicular to the loop, rises from zero to 0.13 T in 0.025 s. What is the average induced current (in A) during that time? - A) 3.82×10^{-4} E) 1.69×10^{-3} - B) 5.54×10^{-4} F) 2.45×10^{-3} - C) 8.04×10^{-4} - G) 3.55×10^{-3} - H) 5.15×10^{-3} - **6.** [3pt] Two wires carry currents in the directions shown. The magnetic field produced by the long wire (I_1) causes a force on the short wire (I_2) that... (only one answer is correct.) - A) points into the page. - B) points toward the long wire. - C) points out from the page. - D) points to the right. - E) is zero. - F) points to the left. - 7. [3pt] Consider the square wire loop shown above. A magnetic field is directed into the page. (For each statement select T True, F False). - A) Rotating the coil (about the dotted axis) at a high frequency in a constant field will generate stronger currents than rotating the coil at a lower frequency. - B) Quicly increasing the magnetic field induces a current in the loop. - C) Quickly decreasing the magnetic field induces a current in the loop. - 8. [3pt] Regarding the diagram above, which of the following statements are true? (For each statement select T True, F False). - A) Energy is stored and released, but not dissipated, in both the capacitor and the inductor. - B) The current through the inductor equals the current through the resistor at any instant. - C) The frequency of the voltage across the inductor equals the frequency of the voltage across the resistor. - **9.** [3pt] Choose the value for the inductance L (in H) such that the above circuit carries the largest current. DATA: $R = 210 \ \Omega.$ $f = 1.93 \times 10^3 \ Hz.$ $C = 6.10 \times 10^{-3} \ F.$ $V_{rms} = 75 V.$ - A) 8.14×10^{-7} - B) 9.53×10^{-7} - H) 2.44×10^{-6} - D) 1.17×10^{-3} E) 1.53×10^{-6} - F) 1.79×10^{-6} - G) 2.09×10^{-6} - 10. [3pt] Using the inductance found in the previous problem, what is the impedance (in Ω) seen by the voltage source? - A) 2.26×10^{1} - B) 3.28×10^{1} - C) 4.75×10^{1} - D) 6.89×10^{1} - E) 9.99×10^{1} F) 1.45×10^2