-Introductory Physics II - EXAM 2 - Mar. 3, 1998 CAPA ID is **9160**

1. [3pt] After being in position a for a long time the switch is changed to position b at time t=0. If the voltage across the capacitor at t = 2.5 s is $V_c = .50V$, what was the voltage of the battery in volts?

DATA: $C = 27.5 \times 10^{-3} F$. $R = 100 \Omega$.

- A) 4.25×10^{-1} E) 6.93×10^{-1}
 - B) 4.80×10^{-1}
- G) 8.85×10^{-1}
- F) 7.83×10^{-1}
- 2. [3pt] Consider a proton moving with a velocity v = 2.80×10^6 m/s perpendicular to a uniform magnetic field B = 1.10 T. What is the radius (in m) of the proton's circular orbit? DATA: $m_p = 1.67 \times 10^{-27} kg$.
- A) 1.42×10^{-2} E) 2.65×10^{-2}
- B) 1.66×10^{-2} F) 3.10×10^{-2}
- G) 3.63×10^{-2}
- 3. [3pt] A long cylindrical solenoid of length ℓ has N turns and carries a steady current I. Which of the following statements are true? (Give ALL correct answers)
 - A) If N is doubled while ℓ and I stay constant, the magnetic field inside the solenoid doubles.
 - B) Inside the solenoid, the magnetic field is directed along the axis of the solenoid.
 - C) If the current is doubled the magnetic field inside the solenoid doubles.
- **4.** [3pt] A long straight wire carries a current I. (For each statement select T True, F False).
 - A) If one doubles the current the magnetic field at any point doubles.
 - B) At any point the magnetic field is directed directly TOWARD the wire.
 - C) The observed magnetic field falls by a factor of one fourth when the distance from the wire is doubled.
- **5.** [3pt] A circular loop (radius r = 0.021 m) has a resistance $R = 13.0 \Omega$. A magnetic field, directed perpendicular to the loop, rises from zero to 0.13 T in 0.025 s. What is the average induced current (in A) during that time?
- A) 3.82×10^{-4} E) 1.69×10^{-3}
- B) 5.54×10^{-4} F) 2.45×10^{-3}
- C) 8.04×10^{-4}
- G) 3.55×10^{-3}
- H) 5.15×10^{-3}

- **6.** [3pt] Two wires carry currents in the directions shown. The magnetic field produced by the long wire (I_1) causes a force on the short wire (I_2) that... (only one answer is correct.)
 - A) points into the page.
 - B) points toward the long wire.
 - C) points out from the page.
 - D) points to the right.
 - E) is zero.
 - F) points to the left.

- 7. [3pt] Consider the square wire loop shown above. A magnetic field is directed into the page. (For each statement select T True, F False).
 - A) Rotating the coil (about the dotted axis) at a high frequency in a constant field will generate stronger currents than rotating the coil at a lower frequency.
 - B) Quicly increasing the magnetic field induces a current in the loop.
 - C) Quickly decreasing the magnetic field induces a current in the loop.

- 8. [3pt] Regarding the diagram above, which of the following statements are true? (For each statement select T True, F False).
 - A) Energy is stored and released, but not dissipated, in both the capacitor and the inductor.
 - B) The current through the inductor equals the current through the resistor at any instant.
 - C) The frequency of the voltage across the inductor equals the frequency of the voltage across the resistor.
- **9.** [3pt] Choose the value for the inductance L (in H) such that the above circuit carries the largest current. DATA: $R = 210 \ \Omega.$ $f = 1.93 \times 10^3 \ Hz.$ $C = 6.10 \times 10^{-3} \ F.$ $V_{rms} = 75 V.$
- A) 8.14×10^{-7}
- B) 9.53×10^{-7}
- H) 2.44×10^{-6}

- D) 1.17×10^{-3} E) 1.53×10^{-6}
- F) 1.79×10^{-6}
- G) 2.09×10^{-6}
- 10. [3pt] Using the inductance found in the previous problem, what is the impedance (in Ω) seen by the voltage source?
- A) 2.26×10^{1}
 - B) 3.28×10^{1}
- C) 4.75×10^{1}
- D) 6.89×10^{1}
- E) 9.99×10^{1} F) 1.45×10^2