Pratt, Scott

Section 999

-Introductory Physics II - EXAM 4 - Apr.

CAPA ID is 4835

1. [3pt] An electron has a kinetic energy of $20 \ eV$. What is its wavelength in meters? DATA: $m_e = 9.11 \times 10^{-31}$ kg.

- A) 1.17×10^{-10} B) 1.32×10^{-10} C) 1.49×10^{-10} E) 1.90×10^{-10} $F) 2.15 \times 10^{-10}$ G) 2.43×10^{-10} H) 2.74×10^{-1}
- 2. [3pt] Now imagine that such an electron is incident on a pair of slits separated by 3.29×10^{-9} m. What is the angle (in degrees) between the central maximum and the first-order maximum.
 - A) 3.55×10^{-1} E) 1.57
- B) 5.14×10^{-1}

F) 2.27

C) 7.46×10^{-1}

G) 3.30

- H) 4.78
- 3. [3pt] Consider a single electron in the ground state of a helium nucleus. (For each statement select G Greater than, L Less than, E Equal to).
 - A) The wavelength of a photon emitted from the n=2 to the n=1 level in Helium is (GLE) to the wavelength of a photon emitted from the same levels in Hydrogen.
 - B) The magnitude of the electron's binding energy to Helium is (GLE) to the magnitude of an electron's binding energy in the ground state of Hydrogen.
 - C) The radius of the electron's orbit around the helium is (GLE) than the radius of an electon's orbit around Hydrogen.
- **4.** [3pt] A particle of mass m, confined to a box of size L, is in the lowest possible energy state (ground state). (For each statement select T True, F False).
 - A) If the size of the box is reduced, the kinetic energy of the particle must increase.
 - B) If the mass of the particle is increased, the kinetic energy of the particle must increase.
 - C) If the particle is an electron, no more than two electrons can occupy the ground state of the box.
- **5.** [3pt] An electron falls from the n=6 to the n=5 level in hydrogen. What is the energy (in eV) of the associated photon?
- A) 1.66×10^{-1}
- B) 2.21×10^{-1}
- C) 2.94×10^{-1}
 - D) 3.91×10^{-1}

- E) 5.20×10^{-1}
 - F) 6.92×10^{-1}
- G) 9.20×10^{-1}

- **6.** [3pt] A radioactive sample initially has 7.0×10^9 radioactive nuclei. After 24 hours, there are only 2.0×10^6 radioactive nuclei remaining. What is the half-life? Give answer in seconds.
- A) 5.06×10^3
- B) 7.34×10^3
- C) 1.06×10^4
- D) 1.54×10^4

- E) 2.24×10^4
- F) 3.24×10^4
- G) 4.70×10^4 H) 6.82×10^4
- 7. [3pt] The nucleus of a neutral atom is described by the D) 1.68×10^{-10} mbol: ${}_{6}^{14}C$. (For each statement select T True, F False).
 - A) There are 14 neutrons in the nucleus.
 - B) The ground state electronic configuration is $1s^22s^22p^63s^23p^2$.
 - C) The number of electrons equals the number of protons.
 - 8. [3pt] Radioactive materials can be harmful to your health because radiation (choose the single best answer)
 - A) removes quarks from your protons
 - B) removes neutrons from your nuclei
 - C) removes protons from your nuclei.
 - D) raises the temperature of your cells
 - E) removes electrons from your atoms
 - 9. [3pt] A nucleus undergoes a gamma decay, releasing a photon of energy 9.3 MeV. What is the change in the mass (in atomic mass units, u) of the nucleus?
 - A) 3.27×10^{-3}
- B) 4.09×10^{-3}
- C) 5.11×10^{-3}
- F) 9.98×10^{-3} E) 7.99×10^{-3}
 - G) 1.25×10^{-2}
- 10. [3pt] Consider the following statements regarding nuclear reactions and decays. (For each statement select T True, F False).
 - A) The gamma decay of a nucleus changes the net number of protons in the nucleus.
 - B) The net number of quarks minus the net number of antiquarks always remains constant.
 - C) Neutrons can not decay due to conservation of baryon number.

Dept. of Physics and Astronomy, Michigan State University CAPA@msu