ASSIGNMENT 1

Reading: Kittel, Chapter 3
Problems

1. Given two vectors u and v in an orthogonal system with $u=\left[\begin{array}{l}3 \\ 7 \\ 2\end{array}\right]$ and $v=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ find: $|\mathrm{u}|,|\mathrm{v}|,(\mathrm{u} \bullet \mathrm{v}), \theta_{\mathrm{uv}}$, where θ_{uv} is the angle between u and v .
2. Given the 3×3 matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right]$ calculate \mathbf{A}^{-1}. Verify that $\mathbf{A A}^{-1}=\mathbf{I}$
3. Let $\Psi(x)$ be a 1-dimensional wave function. If $\Psi_{1}(x)=\mathrm{Ae}^{-\mathrm{ax}}{ }^{2}, \Psi_{2}(\mathrm{x})=\mathrm{Bxe}^{-\mathrm{ax}}{ }^{2}$, and $P=e x$, calculate I_{11}, I_{12}, and I_{22} where $I_{i j}=\int_{-\infty}^{\infty} \Psi_{i}^{*}(x) P \Psi_{j}(x) d x$.
4. Consider an periodic, infinite 1-dimensional square wave of amplitude A and period a, whose value is $-\mathrm{A} / 2$ in the region between $\mathrm{x}=-\mathrm{a} / 2$ and $\mathrm{x}=0$ and $\mathrm{A} / 2$ between $\mathrm{x}=0$ and $x=a / 2$. Calculate the first 3 terms in its Fourier expansion.
5. Find the new energy eigenstates created by forming a linear combination of two identical s-wave functions so that $\Psi(\mathrm{r})=\mathrm{u}_{1} \Psi_{1}(\mathrm{r})+\mathrm{u}_{2} \Psi_{2}(\mathrm{r})$.

The energy $\mathrm{E}=\langle\mathrm{H}\rangle=\frac{\langle\Psi| \mathrm{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}$.

Find an expression for E in terms of the coefficients u_{i} and matrix elements H_{ij}. Assume that the wavefunctions are orthonormal. Apply the variational principle by differentiating with respect to $u^{*}{ }_{1}$ and $u^{*}{ }_{2}$ independently. Find the eigenvalue equation and solve for the energies in terms of $\mathrm{H}_{11}\left(=\mathrm{H}_{22}\right)$ and $\mathrm{H}_{12}\left(=\mathrm{H}_{21}\right)$. How does this relate to the existence of bonding and antibonding electron states?

