

 You should know the materi it's mostly from the book, but I will cover only a part of wha SO come to class. 	The TA: Deborah Frank Office hrs just before each quiz. 10-12 Tuesday BPS 3265 Phone 355-9200, ext 2446	
• Tests:		
 Quiz every Tuesday (Drop lowest two) 	2/3 of grade	
• (cumulative) Final	1/3	
Occasional extra credit question	ons in class.	
• Final grade will be on a curv worst-case curve.	re, although there is a guaranteed Also in the syllabus	

This course *is* about:

- The scientific approach.
- What we know about the Universe, from the scale of planets on up.
- How we have come to know it.

3 Major Sections

- 1. Background: The Laws of Physics.
 - Laws of Motion
 - Radiation
 - (Telescopes)

2. The Solar System:

- The Sun (an example of a star)
- Exploring the Planets.

3. The Universe: Where Did It Come From & Where Is It Going?

	(meters)	
Object	Diameter	Distance
Sun	0.241	0
Mercury	0.001	10
Venus	0.002	19
Earth	0.002	26
Mars	0.001	40
Jupiter	0.025	135
Saturn	0.021	247
Uranus	0.009	498
Neptune	0.009	780
Pluto	0.000	1025
Nearest star (Proxima Centauri)	0.241	_6.9E+06
Center of our Galaxy		4.2E+10

The Orion Nebula a present-day site of star formation

1500 ly away from us.Recently-formed stars heat dense, opaque gas cloud.A cavity has blown-out, so we can see in.

Hubble Space Telescope image of "proto-star" with surrounding disk.

The scientific method

- Cause and effect.
- Hypothesis ←→ test.
 - models
- Laws of physics
 - describe what we see happening
 - usually mathematical
 - thought to be same everywhere in universe
 - → measure what happens in lab on earth, then predict what will happen in distant galaxies
 - and vice-versa

The 4 forces

- Gravity
 - attraction of all matter for all other matter
 - very weak force, but there's lots of matter.
- Electromagnetic
 - electricity
 - magnetism
 - light
- Strong nuclear force
 - Holds nuclei of atoms together, against electromagnetic force.
- Weak nuclear force
 - important for subatomic particles such as neutrinos

Eclipses [3.7]

- Lunar eclipse
 - Earth's shadow much larger than entire Moon.
 - But 5° tilt between orbits limits this to twice per year.
- Solar eclipse:
 - Moon can block our view of Sun.
 - Weird coincidence: Sun and Moon have same angular size. Moon can block out view of Sun.
 - But exact alignment required.

What Galileo Saw: 4 moons orbiting Jupiter lee Parapa Image through modern telescope showing 2 of Galileo's satellites and their shadows The old boy's observing notes

Johannes Kepler (1571-1630)

- Tycho was Kepler's "thesis advisor"
 - 20 yrs' data on planetary motions.
 - Wouldn't let Kepler near 'em.
 - Tycho tried to fit data with Ptolemy-like model.
- Kepler analyzed data after Tycho died
 - Concentrated on orbit of Mars.
 - Had to subtract off Earth's (imperfectly known) orbit.
- Discovered 3 "laws" that together describe the motions of all the planets.

Kepler's 3 Laws [2.1]

- Each planet moves around orbit in ellipse, with sun at one focus.
- The straight line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.
- $P^2 = a^3$

But why??

These are descriptive laws, but there must be deeper reasons for the planets to do this.

Isaac Newton (1643-1727)

- One of the great geniuses of the millennium.
 - Invented *calculus*
 - *Mechanics* (the description of how things move)
- Kepler's laws can be derived from Newton's laws
- But Newton's laws are a general descriptions of a far wider range of phenomena
 - universally valid
 - except on the smallest or largest scales, or in extreme situations (strong gravity, high velocities).

Newton's First Law

• Momentum stays constant unless there is a force

- Momentum = m x v = mass x velocity
 - *Mass* is a property of all matter.
 - *Velocity* is a vector: speed + direction
 - Momentum also a vector (i.e. it has a direction)

Newton's Second Law

• F = m x a

Force = *mass x acceleration*

• "change of motion" = acceleration

= change in velocity per unit time.

- 2x more force \rightarrow 2x more acceleration, etc.
- Force is another vector: amount + direction

Total angular momentum of a system is also *conserved*

- Unless acted on by outside forces.
- Angular momentum is another vector
 - amount + direction important
- Everyday examples of conservation of angular momentum at work:
 - precessing tops
 - bicycles, motorcycles
 - daring university students going for a ride on "the stool"

Kepler's 3rd Law

- Newton used this law to derive nature of Gravitational Force.
- But using Newton's laws + gravity to derive Kepler's 3rd law shows:

$$P^2 = \text{constant x } \frac{a^3}{m_1 + m_2}$$

• contains total mass =
$$m_{Sun} + m_{planet}$$

- Kepler missed this because 99.9% of mass is in Sun.
- This is how we determine masses in orbiting systems.

	Lived	Work became known	2
Copernicus	1473-1543	1543	
Tycho	1546-1601	1601	
Kepler	1571-1630	1609	
Galileo	1564-1642	1610	
Newton	1642-1727	1687	
The next big jur • Electromagnet	nps: ^{ism}		1860 Physics
Relativity Nature of our (Colory and othe	r galavies	1910 J
Fynanding Uni	Autor of our Galaxy and other galaxies		
Expanding Off	IVEISE		

