ISP 205
 Visions of the Universe

- Instructor: Dr. Jack Baldwin baldwin@pa.msu.edu
- Office hours (3270 BPS):
- 2-3 Monday
- Noon-2PM Wednesday
- or by appointment (phone 355-9200, ext. 2411)

These are listed in the syllabus

- ISP 205 Lab Course
- Not required in order for you to be in this lecture course.
- $\sim 50 \%$ of you are taking it.
- Deborah Frank, the TA, is in charge of the lab course.
dfrank@pa.msu.edu

Grading $\quad 1$

- You should know the mater
- it's mostly from the book, but
- I will cover only a part of wha
so come to class.

The TA: Deborah Frank
Office hrs just before each quiz. 10-12 Tuesday BPS 3265
Phone 355-9200, ext 2446

- Tests:
- Quiz every Tuesday
$2 / 3$ of grade
- (Drop lowest two)
- (cumulative) Final $1 / 3$
- Occasional extra credit questions in class.
- Final grade will be on a curve, although there is a guaranteed worst-case curve.

This course

 is about:- The scientific approach.
- What we know about the Universe, from the scale of planets on up.
- How we have come to know it.

3 Major Sections

1. Background: The Laws of Physics.

- Laws of Motion
- Radiation
- (Telescopes)

2. The Solar System:

- The Sun (an example of a star)
- Exploring the Planets.

3. The Universe: Where Did It Come From \& Where Is It Going?

Quick tour of the Universe

Units of astronomy

- Numbers ranging from very big to very small
$=>$ use scientific notation

$$
\begin{array}{ll}
100,000,000,000=10^{11} & 0.001=10^{-3} \quad \text { etc } \\
200,000,000,000=2 \times 10^{11} & 0.003=3 \times 10^{-3} \\
2 \times 10^{11} \times 3 \times 10^{-3}=2 \times 3 \times 10^{11-3}=6 \times 10^{8}
\end{array}
$$

- but also......
$6 \times 10^{8}=6 \mathrm{E} 8$
$3 \times 10^{-3}=3 \mathrm{E}-3 \quad$ etc.

Distances

- metric units: $1 \mathrm{~km}=0.6$ miles
- diameter of Earth: $\quad 13,000 \mathrm{~km} \quad(8,000$ miles)
- circumference of Earth: $40,000 \mathrm{~km}(25,000$ miles)
- astronomical unit (au): radius of Earth's orbit - = $1.5 \times 10^{8} \mathrm{~km}$
- Parsec (pc): distance to object that has parallax of 1 arcsec
- parallax? Arcsec? What does those mean???
- light years (ly):
- distance light travels in 1 year $=9.5 \times 10^{12} \mathrm{~km}$
- 1 parsec (1 pc) = 3.26 ly

Time

- seconds (s), years (yr), Gigayears ($\left.\mathrm{Gyr}=10^{9} \mathrm{yrs}\right)$
- Lookback time
- light travels $1 \mathrm{ly} / \mathrm{yr}$
- most distant observable objects (QSOs) are $\sim 10^{10}$ ly away
- we see them as they were $\sim 10^{10}$ yrs ago

The Solar System

- Sun
- 9 planets
- 65+ moons
- comets
- asteroids
- dust
- gas
- cosmic rays
- other non-descript junk

A model solar system

(scaled down by a factor of 6 million)

	(meters)	
Object	Diameter	Distance
Sun	0.241	0
Mercury	0.001	10
Venus	0.002	19
Earth	0.002	26
Mars	0.001	40
Jupiter	0.025	135
Saturn	0.021	247
Uranus	0.009	498
Neptune	0.009	780
Pluto	0.000	1025
Nearest star (Proxima Centauri)	0.241	6.9E+06
Center of our Galaxy	---	4.2E+10
70\% of diameter Of Earth!		
100x the real distance to the moon!		

The Orion Nebula a present-day site of star formation

1500 ly away from us.
Recently-formed stars heat dense, opaque gas cloud.
A cavity has blown-out, so we can see in.

Hubble Space Telescope image of "proto-star" with surrounding disk.

The oldest stars

The globular cluster M10

- $\sim 10^{5}(100,000)$ stars
- formed $\sim 10^{10}$ years ago.

The galaxy

- Originally all gas
- Now $\sim 10^{11}$ stars similar to our sun.
- Stars are borne, evolve, then die.
- Material processed through stars.
- Galactic ecology

- This is source of all chemical elements

Clusters of galaxies

The distant galaxy cluster MS1054-0321

- Contents: thousands of galaxies and trillions of stars
- Mass: the equivalent of several thousand of our Milky Ways
- Distance: 8 billion lightyears from Earth.

Hubble Space Telescope image

The Universe

- = all the places we could possibly get to, disregarding problems about travel time.
- We don't see to any edge, just out to where light-travel time = age of oldest observable object.
- For all we know, it goes on forever.
- There may well be other universes, inaccessible from our own.
- Space is curved because of matter and energy contained in it , as per General Relativity.
- Our universe has expanded from a "singularity" that occurred $\sim 10^{10}$ years ago.
- The "Big Bang"

Evidence for Big Bang

- Expanding universe
- (on average) all galaxies flying away from all other galaxies.
- Microwave background radiation
- relic glow from earlier, hotter phase of Universe
- visible only at microwave wavelengths
- comes uniformly from all directions.
- Presently-seen hydrogen, helium were synthesized in the first 3 minutes of life of Universe.

The scientific method

- Cause and effect.
- Hypothesis $\longleftrightarrow \rightarrow$ test.
- models
- Laws of physics
- describe what we see happening
- usually mathematical
- thought to be same everywhere in universe
\rightarrow measure what happens in lab on earth, then predict what will happen in distant galaxies
- and vice-versa

The 4 forces

- Gravity
- attraction of all matter for all other matter
- very weak force, but there's lots of matter.
- Electromagnetic
- electricity
- magnetism
- light
- Strong nuclear force
- Holds nuclei of atoms together, against electromagnetic force.
- Weak nuclear force
- important for subatomic particles such as neutrinos

[Fig 28.16]

The Laws of Motion [1.2]

- History of Astronomy
- 2000 years' worth of wrong models.
- we certainly still don't have it exactly right.
- but we've gotten closer (we think).
- Early Greeks:
- Some remarkable successes
- Knew Earth is round
- Measured Earth's diameter (Eratosthenes, in 200BC)

[Fig 1.10]

But one major error

- Greeks thought Earth was at center
- tried, but could not detect parallax of nearer stars

6 MONTHS
LATER

- No parallax detected...
- Could not imagine stars too far away to detect parallax
$=>$ Earth does not move.

What Ptolemy didn't know:

- Earth moves in orbit around sun.
- The other planets move on their own orbits
 around the sun.
[Fig 1.12]

http://web.cuug.ab.ca/~kmcclary/ORRERY/fastsolar.html shows why this really happens (click "Center", "Earth")

1543: Copernicus showed sun is at center

- Copernicus assumed each planet is on circular orbit about sun.
- We cannot tell difference between apparent motion of Earth around Sun vs. Sun around Earth.

[Fig 1.15]

Eclipses [3.7]

- Lunar eclipse
- Earth's shadow much larger than entire Moon.
- But 5^{0} tilt between orbits limits this to twice per year.
- Solar eclipse:
- Moon can block our view of Sun.
- Weird coincidence: Sun and Moon have same angular size. Moon can block out view of Sun.
- But exact alignment required.

The heliocentric model

- Equally good fit to data about planet's motions
- But fewer "degrees of freedom" (fewer arbitrary constants to specify)
- Occam's razor (William of Occam; 1284-1347)
- the simplest of two or more competing theories is preferable
- an explanation for unknown phenomena should first be attempted in terms of what is already known.
- KEY RESULT: Earth just one of several planets, not center of Universe.

Early 1600’s: Galileo [pp. 32-33]

- First to use telescope to look at night-time sky.

Discovered:

- Milky Way = myriads of stars.
- Phases of Venus
- confirmed heliocentric model.
- Sunspots.
- Craters, maria on Moon.
- Rings of Saturn
- 4 Moons orbiting Jupiter.

Galileo's telescopes: ~ 1 " in diameter x $24-30$ " long
The Scientific Approach:
The explanation must fit the observed facts.

What Galileo Saw:

The milky way $=$ jillions of stars

Johannes Kepler (1571-1630)

- Tycho was Kepler's "thesis advisor"
- 20 yrs' data on planetary motions.
- Wouldn't let Kepler near 'em.

- Tycho tried to fit data with Ptolemy-like model.
- Kepler analyzed data after Tycho died
- Concentrated on orbit of Mars.
- Had to subtract off Earth's (imperfectly known) orbit.
- Discovered 3 "laws" that together describe the motions of all the planets.

Kepler's 3 Laws [2.1]

- Each planet moves around orbit in ellipse, with sun at one focus.
- The straight line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.
- $\mathrm{P}^{2}=\mathrm{a}^{3}$

Kepler's first law:

Each planet moves around orbit in an ellipse, with the sun at one focus.

- Ellipse is a conic section
- Along with circle, hyperbola

- This is an unexpected result...
- Why an ellipse?
- Why is sun at focus rather than at center??

Kepler's second law:

The straight line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.

- planet moves more slowly when it is far from sun
- more rapidly when close to sun
- see the

Kepler's third law: $\mathrm{P}^{2}=\mathrm{a}^{3}$

- $\mathrm{P}=$ period of orbit, in years
- $\mathrm{a}=$ semi-major axis of orbit, in au.

The Motions of the Planets

Ptolemy
140 AD

Copernicus
1543

Simpler model

Kepler 1609

More accurate description of data

Kepler's 3 Laws [2.1]

- Each planet moves around orbit in ellipse, with sun at one focus.
- The straight line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.
- $\mathrm{P}^{2}=\mathrm{a}^{3}$

But why??

These are descriptive laws, but there must be deeper reasons for the planets to do this.

Isaac Newton (1643-1727)

- One of the great geniuses of the millennium.

- Invented calculus
- Mechanics (the description of how things move)
- Kepler's laws can be derived from Newton's laws
- But Newton's laws are a general descriptions of a far wider range of phenomena
- universally valid
- except on the smallest or largest scales, or in extreme situations (strong gravity, high velocities).

Newton's laws of motion (Principea, 1687)

The Harvard Law School version.... See [pg. 43]

1. Every body continues doing what it is already doing --being in a state of rest, or moving uniformly in a straight line --- unless it is compelled to change by an outside force.
2. The change of motion of a body is proportional to the force acting on it, and is made in the direction in which that force is acting.
3. To every action there is an equal and opposite reaction (or, the mutual actions of two bodies upon each other are always equal and act in opposite directions).

Newton's First Law

- Momentum stays constant unless there is a force
- Momentum $=\mathrm{mxv}=$ mass x velocity
- Mass is a property of all matter.
- Velocity is a vector: speed + direction
- Momentum also a vector (i.e. it has a direction)

Newton's Second Law

- $F=m \times a$

Force $=$ mass x acceleration

- "change of motion" = acceleration
$=$ change in velocity per unit time.
- 2 x more force $\rightarrow 2 \mathrm{x}$ more acceleration, etc.
- Force is another vector: amount + direction

Action <---> Reaction

- Or, since $F=$ ma:
$m_{1} a_{1}=-m_{2} a_{2}\left\{\begin{array}{l}\text { Relative } \\ \text { accelerations in } \\ \text { inverse } \\ \text { proportion to } \\ \text { relative masses }\end{array}\right.$

- Or... total momentum of system is conserved (stays constant).
- Rockets and jet engines use this principle.

Gravity

- Universal attraction of all matter for all other matter
- Gravitational force $=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}$

- Newton deduced this from his 3 laws of motion + Kepler's 3rd law.

Newton's 3 laws of motion (The Short Form)

1. Object's momentum does not change unless acted on by a force.
2. $\mathrm{F}=\mathrm{ma}$
3. Conservation of total momentum of system (Action - Reaction).

$$
\begin{gathered}
\text { + Gravity } \\
\text { Gravitational force }=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}
\end{gathered}
$$

- Center of mass
- 3-D teeter-totters:

This globular cluster of $10^{5}(100,000)$ stars also has a center of mass.

- Bound systems of objects (like the globular cluster, or like your car...)
- Just figure out force on center of mass
- System moves as if total mass were concentrated at that point.

Orbits of Planets a la Newton

Kepler's first law becomes:

Planets move in ellipses with solar system's center of mass at one focus.
... but 99.9% of Solar System's mass is in Sun.
center of mass located slightly beneath the surface of the Sun.

simulation with planets 45 times more massive

Angular momentum [pg. 45]

- Momentum $=\mathrm{mxV}$
- Angular momentum $=\mathbf{m} \times \mathrm{V} \times \mathrm{r}$
- a single object:

- system of 3 objects attached by strings:

Total angular momentum
= sum of values for individual objects.

Total angular momentum of a system is also conserved

- Unless acted on by outside forces.
- Angular momentum is another vector
- amount + direction important
- Everyday examples of conservation of angular momentum at work:
- precessing tops
- bicycles, motorcycles
- daring university students going for a ride on "the stool"

Interpreting Kepler's second law

Kepler2 simulation

- This is just conservation of angular momentum in Sun-planet system.
- $\mathrm{mvr}=$ constant
- smaller $\mathrm{r} \rightarrow$ larger v

Kepler's 3rd Law

- Newton used this law to derive nature of Gravitational Force.
- But using Newton's laws + gravity to derive Kepler's 3rd law shows:

$$
\mathrm{P}^{2}=\operatorname{constant} \mathrm{x} \frac{\mathrm{a}^{3}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

- contains total mass $=m_{\text {Sun }}+m_{\text {planet }}$
- Kepler missed this because 99.9% of mass is in Sun.
- This is how we determine masses in orbiting systems.

Energy = ability to do work

- Energy = force x distance
- Kinetic energy $=\frac{m v^{2}}{2}$
- Other kinds of energy
- Gravitational potential energy
- Electrostatic/magnetostatic potential energy
- Electromagnetic (light) energy
- Mass-energy: $\mathrm{E}=\mathrm{mc}^{2}$ (Special Relativity)
- Total energy of system stays constant unless acted on by outside force.
- Conservation of energy.

Gravitational Energy \& Escape Velocity

- For a canon ball shot straight upwards:
- Total energy = kinetic energy + gravitational potential energy.
- kinetic energy \rightarrow potential energy, Canon ball slows down
(like a pendulum on its upswing).
- Large initial velocity
\rightarrow will escape Earth's gravity and keep going.
- Escape velocity = minimum velocity for escape
 the exact formula...

M = mass of Earth
$r=$ initial distance from center of Earth

\qquad
\qquad

Circular vs non-circular orbit

- Gravity pulls bullet towards center of Earth.
- Same for satellite, moon, etc.
- Bullet tries to keep going in straight line
- momentum... Newton's first law.
- Result is bullet moves in curved path.
- Choosing correct velocity leads to circular orbit.
- $8 \mathrm{~km} / \mathrm{s}=17,500 \mathrm{mph}$ at Earth's surface.
- lower velocity
(less total energy)
\rightarrow elliptical orbit (which collides with Earth).

An amazing 140 years

	Lived	Work became known
Copernicus	$1473-1543$	1543
Tycho	$1546-1601$	1601
Kepler	$1571-1630$	1609
Galileo	$1564-1642$	1610
Newton	$1642-1727$	1687

The next big jumps:

- Electromagnetism
- Relativity
- Nature of our Galaxy and other galaxies
- Expanding Universe
- Understanding the energy source of stars
$\left.\begin{array}{l}1860 \\ 1910\end{array}\right\}$ Physics $\left.\begin{array}{l}1920 \\ 1929 \\ 1938\end{array}\right\}$ Astronomy

Some Important Concepts

- Newton's 3 laws of motion
- Object's momentum does not change unless acted on by a force.
- $\mathrm{F}=\mathrm{ma}$
- Conservation of total momentum of system (Action - Reaction).
- Gravitational force

- Conservation of total angular momentum of system.
- Conservation of total energy of system.

- Kepler's laws and almost everything else about orbits and motions in general are contained in the above.

Limits of Newton's Laws

Well established

- Very high velocities \rightarrow Special Relativity
- Very strong gravitational fields $\boldsymbol{\rightarrow}$ General Relativity
- Very small scales \rightarrow Quantum mechanics

Highly speculative

- Inertial mass vs. Gravitational mass??
- Inertial: \quad Momentum $=\mathrm{mxv}$

$$
\mathrm{F}=\mathrm{m} \times \mathrm{a}
$$

- Gravitational: $\mathrm{F}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}$

Are these two kinds of masses really proportional to each other?

Some theories postulate that they are not.

