Star Formation: Interstellar Gas and Dust

- Space between stars is not empty after all.
- Interstellar medium:
- Gas
- Dust
- Molecular clouds
- More concentrated in spiral arms of Galaxy
- Stars form from this material
- ...and then eventually die and return gas back into interstellar medium.

Dust [19.4]

- Tiny grains
- 10^{-8} to $10^{-7} \mathrm{~m}$.
- Built up of molecules of most common elements after hydrogen and helium
- Core: Silicates or Graphite (Si, O, C)
- Mantle: C,N,O combined with H
- Absorb light
- Absorb strongest in blue, less in red.
- Blocks view through disk of our Galaxy
- except in infrared
- and (better yet) radio

Molecular clouds

- Massive interstellar gas clouds
- Up to $\sim 10^{5} \mathrm{M}_{\odot}$
- 100 's of LY in diameter.
- High density by interstellar medium standards
- Up to 10^{5} atoms per cm^{3}
- Shielded from UV radiation by dust \rightarrow atoms are combined into molecules.
- H_{2}...and also $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, CO plus much more complex molecules.
- Preferred place for stars to form.

Molecular clouds found on inner edges of spiral arms

CO contours over red image

CO contours over 21 cm map

Example: The Orion Nebula

- 1500 LY away from us
- The central "star" in Orion's sword.

HII region is small cavity at edge of much bigger molecular cloud

- Ionized region has "blown out" of near side of dense cloud.
- Many more similar starformation regions buried deep inside cloud.

Full extent of star-formation region becomes apparent in infra-red light.

- 100 LY across
- $200,000 \mathrm{M}_{\odot}$
- Only a few of its stars close to the near edge can be seen in visible light.
- Infrared light penetrates dust \& shows many more stars.

Star formation waves in dense molecular clouds

[Fig 20.7]

- Photons from very luminous O stars
\rightarrow blows away gas + dust.
- \rightarrow Clusters emerge from dust shrouds.
- Compression of gas \rightarrow inward wave of star formation.

Collapse of proto-star

- Factor 100 density increase \rightarrow gas breaks up into star-sized chunks.
- Proto-stars then collapse due to gravitational self-attraction.
- Angular momentum \rightarrow disks.

Star-forming region in M33

- NGC 604
- Vast complex of molecular clouds \& HII regions.
- In outer spiral arms of the nearby galaxy M33.
- Contains 200 O stars.

Stellar masses range from $\sim 200 \mathrm{M}_{\odot}$ to $\sim 0.08 \mathrm{M}_{\odot}$

- What sets upper limit?
- Radiation pressure:
- Photons carry momentum.
- When atoms absorb photons they acquire this momentum.
- Pushes atoms away from light sourree (star).
- Eddington limit. Radiation pressure on gas exceeds gravitational attraction of star.
- Blows away gas trying to fall onto forming star.
- What sets lower limit?
- Collapsing gas cloud does not get hot enough in center to start p-p reaction.

Known Planets Outside the Solar System

STAR	DISTANCE	SPECTRAL	MASS	SEM-MAJ.	PERIOD	ECC.
	(p)	TYPE	(Jupiters)	AXIS (AU)	(days)	
HD 83443	43.5	K0 V	0.4	0.0	3.0	0.08
			0.2	0.2	29.8	0.42
HD 16141	35.9	G5IV	0.2	0.4	75.8	0.28
HD 168746	43.1	G\%	0.2	0.1	6.4	0.00
HD 46375	33.4	K! IV	0.2	0.0	3.0	0.00
HD 108147	38.6	F8/G0 V	0.3	0.1	10.9	0.56
HD 75289	28.9	GOV	0.4	0.0	3.5	0.05
51 Peg	15.4	G2IVa	0.5	0.1	4.2	0.00
BD-10 3166		G4V	0.5	0.0	3.5	0.00
HD 6434	40.3	G3V	0.5	0.2	22.1	0.30
HD 187123	49.9	G5	0.5	0.0	3.1	0.03
HD 209458	47.0	GOV	0.7	0.0	3.5	0.00
ups And	13.5	F8V	0.7	0.1	4.6	0.03
			2.1	0.8	241.2	0.18
			4.6	2.5	1266.6	0.41
HD 192263	19.9	K2V	0.8	0.2	23.9	0.03
epsion	3.0	K2V	0.9	3.3	2502.1	0.61
HD 38529	42.0	G4	0.8	0.1	14.4	0.28
55 Cnc	12.5	68 V	0.8	0.1	14.6	0.05
			>5 ?	> 4	$>8(y)$?	
HD 121504	44.4	G2V	0.9	0.3	64.6	0.13
HD 37124	33.0	G41V-V	1.0	0.6	155.0	0.19
HD 130322	30.0	Kolil	1.1	0.1	10.7	0.05
tho CrB	17.4	Gova	1.1	0.2	39.6	0.03
HD 52265	28.0	G0 V	1.1	0.5	119.0	0.29
HD 177830	59.0	K0	1.3	1.0	391.0	0.43
HD 217107	19.7	G8 IV	1.3	0.1	7.1	0.14
HD 210277	21.3	G0	1.3	1.1	437.0	0.45
16 CygB	21.6	61.5 Vb	1.5	1.7	804.0	0.67
HD 134987	25.0	G5V	1.6	0.8	260.0	0.25
HD 19994	22.4	F8V	2.0	1.3	454.0	0.20
Gliese 876	4.7	M4V	2.1	0.2	60.9	0.27
HD 92788	32.3	65	3.8	0.9	340.0	0.36
HD 82943	27.5	G0	2.2	1.2	442.6 (y)	0.61
HR810	~ 15.5	G0V pecul.	2.3	0.9	320.1	0.16
47 Uma	14.1	G1v	2.4	2.1	3.0 (y)	0.10
HD 12661	37.0	K0	2.8	0.8	264.5	0.33
HD 169830	36.3	0	3.0	0.8	230.4	0.34

- Lots of 'em
- 108 planets now known
- 94 systems
- 12 multiple planet systems
see Extrasolar Planets Catalogue http://www.obspm.fr/encycl/catalog.html

Search Methods Introduce Selection Effects

- Doppler shifts
- Has found most extrasolar planets.
- Need super-high accuracy.
- Astrometric wobble of the star
- Use satellites (FAME, SIM).
- \rightarrow slightly lower masses.
- Pulsars
- Frequency of flashes "Doppler shifted".
- 3 Earth-sized planets around one pulsar.
- Few places to search.
- Transit photometry
- Planet blocks starlight.
- Potentially most sensitive.
- Kepler , COROT space missions proposed.

What types of planets are out there?

- Current search methods \rightarrow easiest to detect giant planets close to parent star.
- But...why do giant planets exist at less than 1 AU?
- spiraling into the star, as a result of friction.
- Also - 3 Earth-sized planets circling pulsars
- inhospitable environment.
- These planets are thought to have formed after the supernova.
- Future space-based searches
- Earth-sized planets in habitable zone around G stars like the Sun??????

Life in the Solar System

- Earth
- Life formed in oceans.
- Moved onto land only after photosynthesis transformed atmosphere from CO_{2} to oxygen-rich.
- But not all life forms are powered by sunlight.
- Black smokers - volcanic vents on ocean floor.

Life on Mars?

Meteorite from Mars.

- Formed on Mars 4.5 billion yrs ago.
- Ejected from Mars by meteor impact 15 million yrs ago.
- Eventually captured by Earth (!!)
- Found in Antarctica.

Possible discovery of organic compounds in Martian meteorites, and even a possible (micro) fossil.

- Unclear! Considerable skepticism among many scientists.
- Extraordinary claims require extraordinary proof.

Titan (moon of Saturn) has Earthlike atmosphere

- Density about same as Earth's
- 1.6 bars at surface
- Primarily N_{2}, but also:
- carbon monoxide (CO)
- methane $\left(\mathrm{CH}_{4}\right)$
- ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$
- propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$
- hydrogen cyanide (HCN)
- a building block of DNA
- $\mathrm{C}_{2} \mathrm{~N}_{2}, \mathrm{HC}_{3} \mathrm{~N}$
- Thick photochemical smog obscures surface.
- Surface temp $=-180^{\circ} \mathrm{C}$

Europa (moon of Jupiter)

- Covered by layer of water ice.
- Rocky core $\boldsymbol{\rightarrow}$ minerals.
- "Pack ice" on top of an ocean.
- Water must be warmed by heat from Europa's interior.
$-\rightarrow$ energy source for life???

How hard is it to form life?

- Life formed very rapidly on Earth
- Oldest fossils 4 billion yrs old
- Earth only 4.5 billion yrs old
- $\quad \rightarrow$ relatively easy to form life.
- Primitive atmosphere experiments in early 1950's:
- Simulated Earth's original atmosphere + lightning.
- Amino acids formed.
- Organic molecules found in:
- Atmosphere of Jupiter
- Comets
- Giant molecular clouds
- Amino acids found in meteorites.

Is there life out outside the Solar System?

- Drake Equation

Number of observable civilizations $=N=R f_{p} n_{e} f_{1} f_{c} L$

	Parameter	
R	rate at which stars form in Milky Wav	
f_{p}	fraction wi	$\frac{\text { Number }}{\text { time }} \times$ Lifetime $=$ Number at a given time
n_{e}	average \# ¢	
f_{1}	fraction wi	$\frac{1 \text { ball }}{\text { Sec }} \times 20 \mathrm{sec}=20$ balls in air
f_{c}	fraction cat	
L	average lifetime of communicating civilization	

Drake equation: 1961
 40 years later: no detections.

Number of observable civilizations $=N=R \quad f_{p} n_{e} f_{1} f_{c} L$

	Parameter	Best estimate
R	rate at which stars form in Milky Way	~ 1 per year
f_{p}	fraction with planets	lots
n_{e}	average \# earth-like planets per solar system	small???
f_{l}	fraction with life	high??
f_{c}	fraction capable of interstellar radio communication	$? ? ?$
L	average lifetime of communicating civilization	$? ? ?$

The galaxy

- Originally all gas
- Now $\sim 10^{11}$ stars similar to our sun.
- Stars are borne, evolve, then die.
- Material processed through stars.
- Galactic ecology
- This is source of all
 chemical elements

Nucleosynthesis: where we came from.

- $\mathrm{H}, \mathrm{He}, \mathrm{Li}$ are only elements formed in initial formation of universe.
- simplest stable combinations of protons, neutrons and electrons

Periodic Table is in order of complexity

Element	Protons	Neutrons	Total
H	1	0	1
He	2	2	4
Li	3	4	7
C	6	6	12
N	7	7	14
0	8	8	16
Fe	26	30	56

Fusion in stars $\boldsymbol{\rightarrow}$ increasingly more complicated, but more stable nuclei.

- Up until iron (Fe).

What is inside the Sun?

- Measure
- Luminosity
- Mass
- Diameter
- Chemical composition

What is inside other stars?

- Measure
- Luminosity
- Mass
- Surface temperature
- Chemical composition

Eventually, H burns outward in a shell

- Heat source moves closer to surface.
- Layers below surface swell up.
- Star becomes larger
- Surface becomes cooler
\rightarrow Red giant .

Eventually, H burns outward in a shell

- Heat source moves closer to surface.
- Layers below surface swell up.
- Star becomes larger
- Surface becomes cooler
\rightarrow Red giant .

Eventually, H burns outward in a shell

- Heat source moves closer to surface.
- Layers below surface swell up.
- Star becomes larger
- Surface becomes cooler
\rightarrow Red giant.

Eventually, H burns outward in a shell

\longrightarrow Radius \rightarrow

- Heat source moves closer to surface.
- Layers below surface swell up.
- Star becomes larger
- Surface becomes cooler
\rightarrow Red giant.

The Sun currently is neither contracting nor expanding:

- Pressure support from below = gravitational attraction towards center
- But following exhaustion of H fuel in center:

No further nuclear burning
\rightarrow Temperature drops
\rightarrow Pressure drops
Core contracts

- Core contraction releases gravitational energy

[Fig 15.7]
- So center heats up
- But never enough to maintain hydrostatic equilibrium.

What we need are: New sources of fuel

Then...nuclear burning in successive shells

Reaction	Min. Temp.
$4{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}$	$10^{7 \mathrm{o}} \mathrm{K}$
$3{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}$	2×10^{8}
${ }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \rightarrow{ }^{16} \mathrm{O}, \mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$	8×10^{8}
$\mathrm{Ne} \rightarrow \mathrm{O}, \mathrm{Mg}$	1.5×10^{9}
$\mathrm{O} \rightarrow \mathrm{Mg}, \mathrm{S}$	2×10^{9}
$\mathrm{Si} \rightarrow \mathrm{Fe}$ peak	3×10^{9}

- "Onion skin" model
- Central core is iron
- Outer layers correspond to each previous step in nuclear burning chain.

Lifetime for burning $4 \mathrm{H} \rightarrow{ }^{4} \mathrm{He}$ (called "main sequence" lifetime)

Spectral Type	Surface Temp.	Mass $\left(\mathrm{M}_{\odot}\right)$	Lifetime (yrs)
O5	40,000	40	10^{6}
B0	28,000	16	10^{7}
A0	10,000	3.3	5×10^{8}
F0	7,500	1.7	3×10^{9}
G0	6,000	1.1	9×10^{9}
K0	5,000	0.8	10^{10}
M0	3,000	0.4	2×10^{11}

$\underline{H R ~-~ T h e ~ M o v i e ~}$

Lifetimes

stars

Then... much faster evolution through:

- Red giant ($4 \mathrm{H} \rightarrow{ }^{4} \mathrm{He}$ in shell)... takes only 10% as long as main seq. life.
- Helium flash $\left(3^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}\right)$
- He shell burning.
- $\mathrm{C} \rightarrow$ heavier elements.

What stars do

- Gravity \rightarrow Center of star always trying to contract and become more dense.
- Nuclear burning interrupts this from time to time
- High temperature \rightarrow high pressure
- Pressure is what halts gravitational contraction.

Sufficiently high density \rightarrow Electron degeneracy.

- Pauli exclusion principle \rightarrow cannot have two electrons in same place with exactly same energy.
- $\boldsymbol{\rightarrow}$ electrons produce pressure.

- So we can have high pressure without nuclear burning.

Possible ending \#1: a white dwarf

- For mass $<1.4 \mathrm{M}_{\odot}$
- Pressure from electron degeneracy is sufficient to support star

$$
\rightarrow \text { white dwarf }
$$

- A giant crystal-like lattice of nuclei.
- Electrons conduct heat outwards to surface.
- Surface is steadily-cooling black body.

Possible ending \#2: a neutron star

If degenerate electron pressure cannot support the star:

$$
\mathrm{e}^{-}+\mathrm{p}^{+} \rightarrow \mathrm{n}+\text { neutrinos }
$$

- Still denser state of matter than electron degeneracy.
- Sun: $1,000,000 \mathrm{~km}$ diameter
- White dwarf: $10,000 \mathrm{~km}$ (\sim same diameter as Earth)
- Neutron star: 20 km
- Degenerate pressure of neutrons can support stars up to $3 \mathrm{M}_{\odot}$

Pulsars: observations of neutron stars

Time series in visible light. 0.033 sec pulsar is next to a star of constant brightness.

- Originally found repeating radio bursts
- Coming from some distant point in space.
- Dozens now known.
- Pulses repeat with periods ranging from 0.001 to 10 sec .
- Many can also be detected in visible light.

Possible ending \#3: a black hole

- Degenerate pressure of neutrons can support stars only up to $3 \mathrm{M}_{\odot}$
- For $\mathrm{M}>3 \mathrm{M}_{\odot}$: Further collapse \rightarrow black hole
- Mass is so concentrated that light cannot escape.
- One way to think about it:
$-\mathrm{v}_{\text {escape }}=\sqrt{2 \mathrm{GM} / \mathrm{R}}$ becomes greater than speed of light.
- So photons can't escape.
- Black holes now known on three size scales:
- $\mathrm{M} \sim$ a few $\mathrm{M}_{\odot} \quad$ (Single star. $\mathrm{R}_{\text {Schwarzschild }}=9 \mathrm{~km}$)
- $\mathrm{M} \sim 10^{5} \mathrm{M}_{\odot} \quad$ (recently found in 2 globular clusters)
- $\mathrm{M} \sim 10^{8} \mathrm{M}_{\odot} \quad$ (Quasar in center of a galaxy)
- What is the state of the mass inside the black hole???

How do stars get from here to there?

Here: nuclear burning.	
$\mathrm{M}_{\text {initial }}>3 \mathrm{M}_{\odot}$	Nuclear burning all the way to iron.
$\mathrm{M}_{\text {initial }}<3 \mathrm{M}_{\odot}$	Nuclear burning shuts off after He- flash.

There: Final state.	
$\mathrm{M}_{\text {final }}>3 \mathrm{M}_{\odot}$	Black hole.
$1.4<\mathrm{M}_{\text {final }}<3 \mathrm{M}_{\odot}$	Neutron star.
$\mathrm{M}_{\text {final }}<1.4 \mathrm{M}_{\odot}$	White dwarf.

Very massive stars also expel material late in life

- Eta Carinae

- $150 \mathrm{M}_{\odot}$
- 4 million L_{\odot}
- Highly variable in luminosity.
- This material ejected in 1843.
- Major brightening recorded.
- Ejected $3 \mathrm{M}_{\odot}$
- $2^{\text {nd }}$ brightest star in sky at that time.

Naked eye

Supernovae

- Stars more massive than 7-8 M_{\odot} cannot "gracefully" lose mass and become white dwarfs.
- Massive stars end up with iron cores.
- No further nuclear burning possible
- Combining iron into heavier elements soaks up energy.
- Outer layers of star gradually contract onto core which becomes too massive to be held up
 by degenerate electron pressure
- $\mathrm{e}^{-}+\mathrm{p} \rightarrow \mathrm{n}$
- Sudden core collapse: $10^{4} \mathrm{~km} \rightarrow 20 \mathrm{~km}$
- Then core rebounds
- Outer layers fall in, then get hit by rebounding core.

Supernova 1987A

- Exploded in Large Magellanic Cloud
- Small spiral galaxy that orbits our own Galaxy.
- Caught in act of exploding and intensively studied.
- Intense neutrino flux detected.

Pre-existing circumstellar ring lit up first by photons from SN, now by blast wave from SN.

History of our Galaxy: Traced through Nucleosynthesis

- $\mathrm{H} \rightarrow \mathrm{He}$
- main sequence, red giants
- supplements primordial He .
- $\mathrm{He} \rightarrow \mathrm{C}, \mathrm{N}$
- red giants, helium flash, etc.
- $\mathrm{C}, \mathrm{N} \rightarrow \mathrm{Fe}$
- cores of massive stars.
- $\mathrm{Fe} \rightarrow$ heavier elements (U, etc).
- supernova explosions.
- bombardment by neutrons.

- Recycling back into interstellar gas
- Planetary nebula shells
- Other mild-mannered mass loss
- Supernovae

Chemical history of our galaxy

- Chemical enrichment

The buildup of the heavy elements through nucleosynthesis.

- Galaxy started with just H, He, Li
- $\mathrm{H} \rightarrow \mathrm{He} \rightarrow \mathrm{C} \rightarrow \mathrm{O}$ burning has steadily built up carbon, oxygen.
- Elements like iron built up (somewhat) more recently.

Formation of:

