Telescopes

Galileo's telescopes: ~ 1 " in diameter x $24-30$ " long

- Magnify images \rightarrow see details
- Gather light over large surface area \rightarrow see fainter objects.

Using a lens (refractor) [Fig.5.2]

Using a mirror (relector) [Fig. 5.3]

Lick 36" Refractor 1888

Some large ground-based optical telescopes

Mt. Palomar 200" Reflector
Light-gathering power \propto (mirror area) $\propto(\text { mirror diameter })^{2}$
Technological advances

- Lenses \rightarrow mirrors
- Thick mirrors \rightarrow thin mirrors Europe's Very Large passive \rightarrow active support Telescope
- Now working on designs for (Four 8m telescopes) 30 m diameter telescopes.

Mirror for Gemini 8m Telescope

SOAR: MSU’s New 4m Telescope

Superb image quality Superb site in Chile.

Highly competitive for optical/infrared observations.

SOAR on Cerro Pachón, Chile

Start operations in 2004

An International Partnership

- MSU
- University of North Carolina
- National Optical Astronomy Observatories
- Brazil

SOAR mirror casting

Corning Glass Works

Just finished polishing the mirror!

by B.F.Goodrich, in Danbury, CT

Radio telescopes

Angular resolution $=\frac{\text { wavelength }}{\text { mirror diameter }}$

- Radio wavelengths are large \rightarrow need large mirror diameter to see smallangle details.

- Arecibo, Puerto Rico....
- 1000 ft. diameter, but same angular resolution as 0.01 ft optical telescope.

Array of smaller telescopes simulates a huge aperture.

Radio galaxy Cygnus A

Telescopes in Space

- Atmosphere blocks light at many wavelengths
- Atmospheric turbulence smears out images.

Hubble Space Telescope

- 2.4 m diameter mirror
- Ultraviolet/optical/infrared
- Above (most of) Earth's atmosphere
- High angular resolution
- Light not blocked in ultraviolet (or infrared)
- Low earth orbit
- 600 km (370 mile) altitude

- 95 min orbits
- Earth blocks view half of each orbit
- But can be reached by shuttle to install new instruments
- Launched in 1990
- To be replaced by JWST in ~ 2008

Don't write these all down!	Moon: ${ }^{\text {Partial list of missions }}$
Exploring the Solar System	1. Luna 3 (1959)
	2. Ranger (1964-65) 3. Luna 9 lander (1966)
	4. Apollo moonwalks (1968-1972)
	Venus
Information explosion in ~ 1970's, due to spaceflight.	5. Mariner 2 (1962)
	6. Venera 7 lander (1970)
	7. Venera 15,16 orbiters (1983) 8. Magellan orbiter (1991-93)
	8. \quad Magellan orbiter (1991-93) Mars
	9. Mariner 4 (1964)
	10. Mariner 9 orbiter (1971)
	11. Viking 1,2 landers (1976-80)
Solar System info.	12. Painfinder rover(19)
Nine Planets website	13. Pioneer 10 (1973)
	14. Pioneer 11 (1974)
www.seds.org/billa/tnp/	15. Voyager 1 (1979-1980) 16. Voyager 2 (1979-1989)
	17. Galileo orbiter/probe (1995)
	18. Cassini orbiter/probe (2002-2004)

Contents of Solar System

- Sun
- 9 planets
- Moons
- Asteroids
- rocky mini-planets

Object	\% Total Mass
Sun	99.8
Jupiter	0.1
Comets	0.05
All other planets	0.04
Satellites \& rings	0.00005
Asteroids	0.000002
Cosmic dust	0.0000001

- up to a few 10's of km dia.
- mostly in orbits bewteen Mars and Jupiter
- Comets
- icy
- spend most of time at fringes of Solar System.
- Dust ($==>$ meteorites)

The rotation of the planets

- same sense as orbital motion

except:
- Venus (retrograde, very slowly)
- Uranus, Pluto (tipped on side)

Two distinct types of planets

- Terrestial planets
- small, rocky, made of heavy elements: silicon, oxygen, iron, etc.
- Giant (Jovian) planets

Same as the Sun
\& helium.

Planet	Density $\mathbf{g} / \mathbf{c m} \mathbf{3}$
Mercury	5.4
Venus	5.3
Earth	5.5
Mars	3.9
Jupiter	1.3
Saturn	0.7
Uranus	1.2
Neptune	1.6
Pluto	2.1

Differentiation

- Heavy stuff sinks to center of planets
- Giant planets
- total mass, density \rightarrow small solid cores - ($\sim 10 \mathrm{x}$ mass of Earth $)$.
- Terrestrial planets
- cores contain iron, nickel, etc.
- lighter silicates make up crust.
- This separation must have occurred when planets were hot \& liquid.

Moons \& Rings

Planet	Known Moons	Rings?
Mercury	0	
Venus	0	
Earth	1	
Mars	2	Yes
Jupiter	16	Yes
Saturn	19	Yes
Uranus	18	Yes
Neptune	8	
Pluto	1	

A look back at the Solar System

The view back from Voyager 1, on its way out of the Solar System.
Mosaic of images taken at a distance of 40 au (4 billion miles) from the Sun. The Sun is blocked out to make the planets visible. The points marked J, E, V, S, U and N are at the actual locations of the planets. The little boxes show blow-ups of each planet image ... the planets are all just little dots.

Note how the planets are in a plane.

Material from:
Chapter 7: whole chapter.
Chapter 3: fast skim over sect. 3.2, 3.5, 3.6, $3.7+$ box on page 73

Age dating from radioactive rocks [6.3]

- Radioactive decay
- unstable atomic nucleus splits into smaller nuclei (different elements)
- Example: Uranium-238 $\boldsymbol{\rightarrow}$ Lead-206 +4 x Helium-4
- Half-life
- Time for $1 / 2$ of radioactive nuclei to decay

- Minerals form with radioactive elements
- decays produce "daughter" nuclei that shouldn't be in pure mineral.
- Ratio of daughter/parent nuclei shows age since mineral was formed.
- This shows age of Earth, Moon $=4.5$ billion years.

The Earth's Atmosphere

- Weighs 13.6 pounds per square inch
- 10^{-6} of total mass of Earth.
- 78% nitrogen, 21% oxygen,
$+\operatorname{argon}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$, etc.
- Ozone $\left(\mathrm{O}_{3}\right)$ is critical for life
- blocks Sun's ultraviolet radiation
- Ozone hole: over Antarctica, where ozone destroyed by manmade pollutants.
- Where did it come from?
- Formed with rest of Earth?
- Released from interior?
- Dumped onto us by comets?

[Fig 7.11]

Life [7.4]

- Started in CO_{2} atmosphere, roughly 4 billion yrs ago.
- Life initially only in sea... converted CO_{2} to oxygen through photosynthesis.
- The released oxygen was swallowed up in interactions with surface material until ~ 2 billion yrs ago.
- After 2 billion yrs ago, oxygen able to build up in atmosphere.
- + geological activity buried much of the free carbon.
- Atmosphere then converted to today's mix: 78% nitrogen, 21% oxygen, 1% everything else.
- Free oxygen \rightarrow ozone
\rightarrow protection from ultraviolet light $\boldsymbol{\rightarrow}$ land animals

Seasons [3.2]

- Heating of Earth's surface determined by flux of sunlight.
- Flux = incident electromagnetic energy per square meter per second.
- Think of incoming raindrops.
- Earth's orbit nearly round
... not a factor.
- But tilt of Earth's axis
+ conservation of angular momentum

$==>$ much higher flux in one half of year than in other.

Global Warming

- Greenhouse Effect
- Incoming sunlight passes through atmosphere.
- Absorbed by ground.
- Re-emitted as infra-red radiation.

- CO_{2} gas causes atmosphere to be opaque to infra-red light.
[Fig 7.14]
- Infrared light is trapped, so heats surface.
- The Problem
- Human activity causing huge rise in CO_{2}, other gases.
- So temperature is going up.
- What will the consequences be????

Lots of scientific debate about the details....

Is the CO_{2} increase really causing the temperature increase?

- Man-made greenhouse effect is clearly driving up the temperatures.
- But other gasses have bigger effect per molecule than does CO_{2}.

How hot will it get?

- Predictions uncertain - very complicated interactions between atmosphere and ground.
- $3^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{F}\right)$ increase by 2030 is typical prediction.
CO_{2} concentration, from Antarctic ice cores.

For more info:
www.ems.psu.edu/info/explore/

Hemispheric and mean global temperature trends, 1854 to the present

GlobalWarming.html Penn State web site

The Interior of the Earth

[Fig 7.2]

- Crust
- $\sim 6 \mathrm{~km}$ thick under oceans.
- 20-70 km thick under continents.
- Rocks composed of silicon, oxygen, etc.
- 0.3% of mass.
- Mantle
- Slowly flowing semi-solid rock.
- Core
- 7000 km diameter.
- Metallic (iron, nickel, sulfur)
- Outer core is liquid.
- Inner core probably solid.

[Fig 7.7]
- Also fault zones, where one plate slides alongside another.

Geological Activity on Earth

- Plate collisions \rightarrow big-time wrinkling....
... mountain building (e.g. Himalayas, Andes)
- Volcanoes.
- Magma (molten rock) forced upwards from mantle.
- Along mid-ocean ridges (rift zones).
- Around subduction zones (Rim of Fire)
- Hawaiian Island chain:
- Crust drifts past hot spot.
- Unusual.

Geological Activity elsewhere in the Solar System [6.3]

- Buckling and twisting of crust
- Mountain building
- Volcanoes
- Caused by hot interiors
- Presently occurring on
- Earth
- Venus
- Mars
- Several moons of the giant planets
- Formerly occurred on Moon, Mercury (lava flows)

How can we tell when this happened?

Impact Craters

Time before present (billions of years)

- Earth, moon or other large body runs into lots of small stuff
- Requires intersecting orbits between the two bodies.
- Used to be lots more small bodies on intersecting orbits
- We have already smashed into most of them.

Impact Craters as Clocks

The Moon:
Two types of surfaces...
heavily cratered highlands and smooth maria.

- Constant rain of meteors continuously makes craters
- Geologic activity
$==>$ lava flows
$==>$ covers over craters
- So number of craters per unit area proportional to time span since surface was last covered.

