

<text><text><list-item><list-item><image>

Partial list of missions Don't write these all down! Moon: 1. Luna 3 (1959) Exploring the Solar System 2. Ranger (1964-65) 3. Luna 9 lander (1966) 4. Apollo moonwalks (1968-1972) Venus 5. Mariner 2 (1962) Information explosion in \sim 1970's, Venera 7 lander (1970) 6. due to spaceflight. Venera 15,16 orbiters (1983) 7. 8. Magellan orbiter (1991-93) Mars 9. Mariner 4 (1964) 10. Mariner 9 orbiter (1971) 11. Viking 1,2 landers (1976-80) Great source of 12. Pathfinder rover (1997) Solar System info: **Outer planets** 13. Pioneer 10 (1973) Nine Planets website 14. Pioneer 11 (1974) www.seds.org/billa/tnp/ 15. Voyager 1 (1979-1980) 16. Voyager 2 (1979-1989) Galileo orbiter/probe (1995) 17. 18. Cassini orbiter/probe (2002-2004)

Contents of Solar System

- Sun •
- 9 planets
- Moons
- Asteroids
 - · rocky mini-planets

oupitor	0.1
Comets	0.05
All other planets	0.04
Satellites & rings	0.00005
Asteroids	0.000002
Cosmic dust	0.0000001

Object

Sun Juniter % Total Mass

99.8

0.1

- up to a few 10's of km dia.
- mostly in orbits bewteen Mars and Jupiter
- Comets
 - icy
 - spend most of time at fringes of Solar System.
- Dust (==> meteorites)

Differentiation

- Heavy stuff sinks to center of planets
- Giant planets
 - total mass, density \rightarrow small solid cores
 - (~10x mass of Earth).
- Terrestrial planets
 - cores contain iron, nickel, etc.
 - lighter silicates make up crust.
 - This separation must have occurred when planets were hot & liquid.

Moons & Rings		
Planet	Known Moons	Rings?
Mercury	0	
Venus	0	
Earth	1	
Mars	2	
Jupiter	16	Yes
Saturn	19	Yes
Uranus	18	Yes
Neptune	8	Yes
Pluto	1	

The Earth as a Planet

Material from:

Chapter 7: whole chapter.

Chapter 3: fast skim over sect. 3.2, 3.5, 3.6, 3.7 + box on page 73

- Life [7.4]
- Started in CO₂ atmosphere, roughly 4 billion yrs ago.
- Life initially only in sea... converted CO₂ to oxygen through *photosynthesis*.
- The released oxygen was swallowed up in interactions with surface material until ~ 2 billion yrs ago.
- After 2 billion yrs ago, oxygen able to build up in atmosphere.
 - + geological activity buried much of the free carbon.
- Atmosphere then converted to today's mix: 78% nitrogen, 21% oxygen, 1% everything else.
- Free oxygen → ozone

 \rightarrow protection from ultraviolet light \rightarrow land animals

Lots of scientific debate about the details....

Is the CO₂ increase really causing the temperature increase?

• Man-made greenhouse effect is clearly driving up the temperatures.

• But other gasses have bigger effect per molecule than does CO_2 .

How hot will it get?

• Predictions uncertain - very complicated interactions between atmosphere and ground.

• 3° C (5° F) increase by 2030 is typical prediction.

For more info: www.ems.psu.edu/info/explore/ GlobalWarming.html <u>Penn State web site</u>

CO₂ concentration, from Antarctic ice cores.

The Interior of the Earth

[Fig 7.2]

• Crust

- ~ 6 km thick under oceans.
- 20-70 km thick under continents.
- Rocks composed of silicon, oxygen, etc.
- 0.3% of mass.
- Mantle
 - Slowly flowing semi-solid rock.
- Core
 - 7000 km diameter.
 - Metallic (iron, nickel, sulfur)
 - Outer core is liquid.
 - Inner core probably solid.

Geological Activity elsewhere in the Solar System [6.3]

- · Buckling and twisting of crust
 - Mountain building
 - Volcanoes
- Caused by hot interiors
- · Presently occurring on
 - Earth
 - Venus
 - Mars
 - Several moons of the giant planets
- Formerly occurred on Moon, Mercury (lava flows)

How can we tell when this happened?

Impact Craters as Clocks

The Moon: Two types of surfaces... heavily cratered highlands and smooth maria.

- Constant rain of meteors continuously makes craters
- Geologic activity

==> lava flows

- ==> covers over craters
- So number of craters per unit area proportional to time span since surface was last covered.