

<image>

Apollo's Accomplishments

- PR
 - beat Soviets to Moon
- Science
 - Brought back 400 kg of Lunar rocks
 - Composition
 - Age
 - Left behind seismographs and other instruments.
 - "Moonquakes" show internal structure of Moon
 - No life on Moon.

The Origin of the Moon

Four theories

At least three wrong theories

- The Fission Theory --- Moon ejected from Earth.
 - But Moon's orbit is not in plane of Earth's rotation.
 - Why aren't Moon and Earth's composition *exactly* identical?
- The Sister Theory --- Moon and Earth formed side by side.
 - But why aren't compositions not *exactly* identical?
- Capture Theory --- Moon came in from other part of Solar System
 - No way for Moon to lose energy in order to go into orbit.
 - Why are compositions so similar?
- The Current Theory --- the Giant Impact Theory

Structure of Mercury No seismological data... just educated guesses. • Rocky mantle/crust • Perhaps 700 km thick. Metallic core • 75% of planet's radius 450 km-long • Weak magnetic field ridge (rupes) ==> molten material in core. Faults & Ridges → Mercury shrank 200 km-wide by \sim 1-2 km as it cooled. view showing Crater counts Santa Maria \rightarrow this happened after first 0.5 billion yrs. Rupes.

			ding to			
	Venus	Earth				
Diameter	0.95	1				
Mass	0.81	1				
Semi-major axis	0.72	1				
Surface temperature	480° C	20° C				
Surface Air Pressure	92	1	2			
Atmosphere	CO ₂	N ₂	11			

Mars

	Venus	Earth	Mars
Diameter	0.95	1	0.53
Mass	0.81	1	0.11
Semi-major axis	0.72	1	1.52
Density	0.96	1	0.71

- Some of the 16 spacecraft that have gone to Mars:
 - Mariner 9 orbiter (1971-72)
 - Viking 1,2 landers (1976-80)
 - **Pathfinder** lander + rover (1997)
 - Climate Orbitor, Polar lander (crashed, 1999).
 - Mars Global Surveyor: orbiting Mars since March 1999.
 - **Odyssey**: orbiting Mars since October 2001.

Rotating Mars

Geology

- Density suggests mostly silicates, but small metal core
- No detectable magnetic field
- Continental highlands
 - cover ~ 50% of planet.
- Low-lying lava plains
 - average of 4 km lower than continents.
 - Same age as lunar maria 3-4 billion yrs old.

Olympus Mons

- 500 km diameter
 would cover MI lower penninsula
- 25 km above surrounding plains
- largest mountain in Solar System.
 - 100 x volume of Mauna Loa
 - < 100 million yrs old (impact crater counts)
 - so Mars is still geologically active.

Climate	change	S. #.		Si Ci Ci
 Used to be <i>lots</i> of running water Runoff channels. From rainstorms billions of years Outflow channels. From more recent meltings of hug volumes of permafrost. 	C .	der sta		
 Loss of atmosphere due to low escape velocity. Low air pressure, then water freeze-out ==> cannot retain heat. "runaway refrigerator effect" 	Escape velocity Surface temperature Surface Air Pressure	Venus 0.93 482° C 92	Earth 1 20° C 1	Mars 0.45 -100° C 0.007

Life on Mars?

Meteorite from Mars.

• Formed on Mars 4.5 billion yrs ago.

- Ejected from Mars by meteor impact 15 million yrs ago.
- Eventually captured by Earth (!!)
- Found in Antarctica.

Viking landers analyzed soil samples:

- Extremely sensitive search.
- No signs of life.
- But they only measured in 2 locations.

Possible discovery of organic compounds in Martian meteorites, and even a possible (micro) fossil.

• *Unclear!* Considerable skepticism among many scientists.

• Occam's Razor: Extraordinary claims require extraordinary proof.

Coming soon... to a planet near you:

• Beagle 2

- Launch: June 2, 2003; Landing: Dec 24, 2003
 - Robot arm:
 - Grinder, drill, "mole", microscope, spectrometer (measure chemical composition).
 - Gas analyzer to search for life
 - C^{12}/C^{13} ratio?
 - Methane from bacteria?

• MER A, B

- Two separate missions, to different parts of Mars:
 - Launch: June 8, 2003; Landing: Jan 6, 2004
 - Launch: June 25, 2003; Landing: Jan 24, 2003
 - Will travel 40 meters/day, for 3 months.
- Carries cameras, spectrometers, alpha-particle detector, grinder.
- Will determine history of climate & water.

