The Giant Planets [10]

	Distance (au)	Period (yrs)		Diameter	Mass	Rotation
Tilt						
	1	1	1	1	24.0	23
Earth	1	1	1			
(deg)						

[Table 10.3]

- Jupiter, Saturn often the brightest "stars" in the sky
- Telescopes from Earth give good views.
- But (again) spacecraft:
- Pioneer 10, $11(1973,74)$
- Voyager 1,2 Grand Tours (1977...)
- Galileo (Jupiter orbiter + atmospheric probe. 1995)
- Cassini-Huygens (orbiter/probe, arrive Saturn 2004)

Determining the interior structure

- Jupiter $\sim 3 \mathrm{x}$ more massive than Saturn, but only slightly larger.
- Greater pressure \rightarrow greater density
\rightarrow changes in state of atoms, molecules.
- For objects $3 x$ more massive than Jupiter, increasing $\mathrm{M} \rightarrow$ decreasing R.
- Sun is larger than Jupiter because it has an internal energy source to heat it up.

Spherical shell of matter:

Acts as if all mass
at central point.

- Can use orbits of moons, spacecraft to determine oblateness
Oblate shell: does not.
- depends in turn on internal structure, rigidity

Implies gas giants have dense cores

- thick "soup" of rocks and ices
- inner 20-25\% of radii
- 15 earth masses for Jupiter,
- 13 for Saturn, Uranus \& Neptune.
- So core makes up much of planet for Uranus \& Neptune.

Temperature Structure of the Early Solar Nebula

Jupiter

- Main constituents of gaseous atmosphere:
- Hydrogen: 90\%
- Helium: 10%
- Methane $\left(\mathrm{CH}_{4}\right): 0.2 \%$
- Ammonia $\left(\mathrm{NH}_{3}\right): 0.02 \%$
- Clouds
- Frozen ammonia
- Cause of different colors is unknown

JUPITER

Atmospheric Structure

Cloud layers, in the
Hydrogen-Helium
atmosphere.

Ammonia
Water
[Fig 10.11]

Strong winds, differential rotation

[Fig 10.14]

- Different than Earth
- Fast spin
- Absence of solid surface underneath.

Jupiter: The Great Red Spot

Color-coded image, showing which light is reflected off which type of clouds. Uses spectroscopy.
Blue = low clouds
Pink = high, thin clouds
White = high, thick clouds

This is a dynamic, evolving storm:

Movie red spot storm
Long-lasting storm, first seen by Galileo in 1610 .

Earth sort of to scale:

Jupiter's heat sources

- 50% is from solar energy
- But other 50% comes from internal heating
- This is gravitational energy released when Jupiter formed.
- Currently stored in interior as heat energy.
- Slowly being radiated away.
- Plus maybe some continuing energy release from contraction.
- Similar effect in Saturn
- But additional effect of same magnitude from ongoing differentiation.
- Separation of H from He.

View from Voyager 2, in 1986

False-color image emphasizing "Dark Spot"

Clouds, seen in infra-red.

Seasons of Uranus
 84-year Sidereal Period

[Fig 10.11]

Methane Clouds on Neptune

Blue color is due to methane $\left(\mathrm{CH}_{4}\right)$ gas.

White clouds are methane ice crystals, $\sim 70 \mathrm{~km}$ above denser part of atmosphere.

Taken by Voyager 2 from a distance of $590,000 \mathrm{~km}$.

- Anti-cyclone similar to Great Red Spot on Jupiter.
- About same size as Earth.
- Moved across Neptune's surface at $700 \mathrm{~km} / \mathrm{hr}$.
- Seen by Voyager (1989), then disappeared.

Some planets and moons

shown in correct relative sizes
Earth Venus Mars

Planets:
orbit around Sun

Moons:
orbit around planets

	Diameter	elative	Density \% Reflectivity$\left(\mathrm{g} / \mathrm{cm}^{\wedge} 3\right)$	
	(km)	Mass		
Moon	3476	1.0	3.3	12
Callisto	4820	1.5	1.8	20
Ganymede	5270	2.0	1.9	40
Europa	3130	0.7	3.0	70
10	3640	1.2	3.5	60

Callisto

- Orbital period: 17 days
- Tidal locking with Jupiter
- Surface temperature $=-140^{\circ} \mathrm{C}$
- appears to be mostly ice.
- 1.8 x density of water
- Many impact craters.

Callisto

- Not well differentiated
- Close Galileo flybys $\boldsymbol{\rightarrow}$ gravitational field $\boldsymbol{\rightarrow}$ no dense core.
- Geologically dead for 4 billion yrs.

Zooming in on Callisto

- Largest satellite in Solar System
- Fewer impact craters than Callisto \rightarrow geologically active.
- Differentiated
- Rock, metal core.
- Magnetic field present.
- Mantle, crust made of ice
- Volcanic flows, but water rather than lava.
- Ridges, valleys due to compression of crust.
- Ganymede is closer to Jupiter than is Callisto
- Tidal forces may drive this geological activity.

Europa

- Not made of ice.
- Density similar to Moon
- Heating by Jupiter probably the reason.
- Tidal forces keep it geologically active.
- But covered by layer of water ice.
- Appears to be "pack ice" on top of an ocean.
- Water must be warmed by heat from Europa's interior.

Io

- Closest to Jupiter (of Galilean Satellites)
- Strongest tidal forces.
- Active volcanoes
- hot silicate lava, similar to Earth.

Images of same region, 5 months apart.

Haemus Mons -
a volcanic cone

Loki Patera
Thought to be a liquid sulphur lake with a solid sulpher raft.

Landscapes on the Galilean Satellites

The Roche limit

- For an extended body in orbit around another body:
- $\mathrm{P}^{2}=\mathrm{a}^{3} \quad \rightarrow$ different parts of extended body have different orbital periods.
- So body tends to be torn apart.
- But self-gravity tends to hold it together.
- Roche's limit is where these two opposing effects are balanced:

$$
\begin{gathered}
\mathbf{R}_{\text {Roche }}=2.5\left(\rho_{\text {planet }} / \rho_{\text {moon }}\right)^{1 / 3} R_{\text {planet }} \\
\text { where } \rho=\text { mean density. } \\
R_{\text {planet }}=\text { radius of planet. }
\end{gathered}
$$

- Expressed in terms of density and $\mathrm{R}_{\text {planet }}$ in order to cancel out terms referring to size and mass of moon and mass of planet.

. . .and Jupiter's outer satellites			
	Semimajor Axis	Diameter	
	(km x 1000)	(km)	[Appendix 8]
Metis	128	20	
Adrastea	129	40	
Amalthea	181	200	
Thebe	222	90	
Io	422	3630	
Europa	671	3138	
Ganymede	1070	5262	
Callisto	1883	4800	Captured asteroids?
Leda	11090	15	
Himalia	11480	180	Why in two groups??
Lysithea	11720	40	
Elara	11740	80	
Ananke	21200	30	
Carme	22600	40	Retrograde +10 more
Pasiphae	23500	40	Orbits $\leftarrow \underset{1999}{ }$
Sinope	23700	40	

The Saturn System

Saturn's satellites

Some planets and moons

shown in correct relative sizes

Earth Venus Mars

Titan's atmosphere

[Fig 11.2]

- Density about same as Earth's
- 1.6 bars at surface
- Primarily N_{2}, but also:
- carbon monoxide (CO)
- methane $\left(\mathrm{CH}_{4}\right)$
- ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$
- propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$
- hydrogen cyanide (HCN)
- a building block of DNA
- $\mathrm{C}_{2} \mathrm{~N}_{2}, \mathrm{HC}_{3} \mathrm{~N}$
- Thick photochemical smog obscures surface.
- Surface temp $=-180^{\circ} \mathrm{C}$

What little we know about Titan's surface

- Infrared images showing 4 faces of Titan
- From HST
- See through the haze.
- Titan is tidally locked to Saturn
- Solid brick-red shows regions that could not be imaged through the haze.

Thought to have land masses and ethane oceans

Roche's limit and the Rings

Large objects cannot form in this region,
or get broken up even if they do form.

Satellite-Ring Interactions

- Many small satellites none-the-less found in rings.
- Their gravitational interaction shapes the rings:
- Cause gaps in rings.
- Swept out through gravitational resonances
- cf. Orbital periods with 2:1 or 3:2 ratios, etc.
- or small moons move directly in gaps.
- Keep rings from spreading out and dissipating
- Shepherd moons: contain material in rings immediately adjacent to orbit of moon.

Triton - the largest moon of Neptune

- 2700 km diameter (0.8 x Moon)
- Probably 75\% rock, 25% ice.
- N_{2} atmosphere
- Retrograde orbit
- Rotation axis tilted
157° from Neptune's axis.
- Many similarities to Pluto.

An erupting ice volcano on Triton

Some planets and moons

shown in correct relative sizes

Our best images of Pluto:

- Charon
- discovered in 1978
- half the size of Pluto
- Pluto previously thought to be much larger.

Pluto

[Fig 11.16]

- Pluto \& Charon both in synchronous rotation
- always show same faces to each other
- Pluto's inclination $=118^{\circ}$ (i.e. tipped on its side)
- but Charon orbits in Pluto's equatorial plane.
- Pluto's orbit crosses Neptune's
- Triton has retrograde rotation, etc.
- Is there a connection??

