Physics 492 homework VI, due Fri Feb 14

Reading: Chapters 6, 7.1-3
Problems:

1. Use the masses in the Table of Isotopes in the CRC Handbook of Chemistry and Physics (on reserve in Physics Library) or on the Web (http://www.nndc.bnl.gov/nndcscr/ masses/MASS_RMD.MAS95) to show that ${ }^{197} \mathrm{Au}$ is nominally unstable with respect to α decay. Calculate the kinetic energy of an α particle that would be emitted in the decay. (Note: Because of the recoil given to the daughter nucleus, the kinetic energy is slightly less than the Q-value for the decay.) Using the empirical Geiger-Nutall law, $\log _{10} t_{1 / 2} \simeq$ $a+b Q^{-1 / 2}$, with $a \simeq-1.61 Z_{D}^{2 / 3}-21.4$ and $b \simeq 1.61 Z_{D}$, estimate the half-life for the α decay of gold. The time in the empirical law is in seconds and the Q-value is in MeV . How does that half-life compare to the age of Universe? How does the Q-value compare to the one obtained in Problem 5.1 from Williams?
2. Consider the strongly deformed nucleus ${ }^{252} \mathrm{Fm}$ with the deformation parameter $\epsilon=0.3$. That is, the nucleus is shaped like an ellipsoid of revolution with semimajor axis $a^{\prime}=R(1+\epsilon)$ and semiminor axis $a=R /(1+\epsilon)^{-1 / 2}$, where $R \simeq r_{0} A^{1 / 3}$ is the mean radius. Using a potential of the form suggested in the figure below, estimate the relative probabilities of polar and equatorial emission of α particles.

In a deformed nucleus, α particles escaping from the poles enter the Coulomb barrier at the larger separation a^{\prime}, and must therefore penetrate a lower, thinner barrier. It is therefore more probable to observe emission from the poles than from the equator.
2. Use the tunneling formula derived in class, and given in the handout, to justify the empirical Geiger-Nutall law in Problem 2, including the values of the numerical coefficients there. The α-particle velocity inside the parent nucleus may be assumed to take some representative value, such as outside the nucleus or larger.
4. A typical induced fission reaction is

$$
n+{ }_{92}^{235} U \rightarrow{ }_{36}^{92} K r+{ }_{56}^{142} B a+2 n
$$

(a) Estimate the mass energy released, using the Weizsäcker semi-empirical mass formula.
(b) Calculate the mass energy released, using the exact atomic masses in the Table of Isotopes.
(c) Calculate the total mass energy, in joules, released when 1 kg of ${ }^{235} \mathrm{U}$ undergoes fission.

Note: nuclear mass $=$ atomic mass $-Z m_{e}$, $1 \mathrm{u}=931.494 \mathrm{MeV} / \mathrm{c}^{2}$, mass excess $=$ atomic mass $-\mathrm{A} \times 1 \mathrm{u}$.

