AST101: Right Ascension and Declination Worksheet

Examine the rectangular star map. It represents the entire celestial sphere as a rectangle. Distortions occur when a 3D sphere is drawn as a flat rectangle. The distortions are severe near the top and bottom of the map. You will notice slightly odd shapes elsewhere, for instance, the Big Dipper and Cassiopeia. The distortion is quite workable for most purposes in the center $2 / 3$ rds of the map. It's similar to the rectangular maps of the earth that grossly distort the landmasses near the north and south poles, but work fine for the major populated areas closer toward the equator.

The line running horizontally through the center of the star map represents the celestial equator. Right ascension (RA) is measured (in what units?) along this line from right to left. Notice the right ascension scales at the top and bottom of the map.

Declination (dec) is measured (in what units?) perpendicular to the celestial equator. The scales are on the left and right edges of the map.

Compare the coordinates listed on the Brightest Stars chart with those stars' positions on the map to make certain you understand how this celestial coordinate system works and then answer the questions that follow.

1. Find on the map the "topmost" star of the constellation Libra. What is its right ascension, to the nearest 15 minutes, as read from the map?

What is the declination of that same star, to the nearest 2 degrees?
2. The sun's location at the first day of each season (northern hemisphere) is giving in the table below. Plot its position on the rectangular star map for each date and label it with the season.

Season	RA	Declination
Autumn	12 h 0 m	0°
Winter	$18 \mathrm{~h} \mathrm{0m}$	-23.5°
Spring	Oh 0m, or 24 h 0 m	0°
Summer	6 h Om	$+23.5^{\circ}$

3. Fill in the table below with the constellation closest to the sun's position (that is, the constellation the sun is "in") and the constellation closest to the opposite point in the sky (opposite the sun) on each of the seasonal positions.

4. Now that the four principal seasons are plotted, imagine where the sun might be on dates between these points. For example, what are the approximate RA and dec of the sun on October 22? How about May 21?

Date RA Dec
October 22
May 21

The sun always appears on the imaginary line called the ecliptic. The ecliptic can be also thought of as tracing the plane of the earth's orbit. Label the ecliptic on the map.
5. The following table lists the celestial coordinates for the major planets on September 24, 2004. Plot the planet positions on the map and label each planet. Try to use a different color pen than the sun plotting.

Planet	RA	Dec
		Mercury

6. In the following table, fill in the constellation closest to each planet's position on September 24, 2004:

Planet	Constellation
Mercury	
Venus	
Mars	
Jupiter	
Saturn	

7. What can you conclude about the position of the planets relative to the plane of the earth's orbit?
8. The following table lists the moon's coordinates at 5 -day intervals for the next month. Plot the moon's position on the map and label each position with the date. Use a different color pen for this, if possible.

Date	RA	Dec
$9 / 24 / 04$	20 h 23 m	-25°
$9 / 29$	0 h 46 m	$+3^{\circ}$
$10 / 4$	4 h 51 m	$+26^{\circ}$
$10 / 9$	9 h 14 m	$+21^{\circ}$
$10 / 14$	13 h 14 m	-7°
$10 / 19$	18 h 02 m	-28°

9. In the following table, fill in the constellation closest to each moon position. What can you conclude about the moon's orbit relative to the plane of the earth's orbit?

Date Constellation
9/24/04 \qquad
9/29 \qquad
10/4
10/9
10/14 \qquad
10/19

