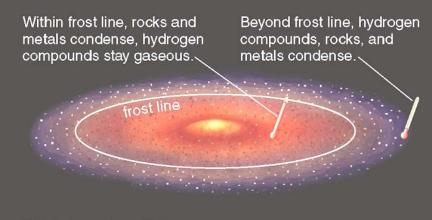

Overview of Solar System


- The solar system is a disk
 - Rotation of sun, orbits of planets all in same direction.
 - Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions).
 - Angular momentum of pre-solar gas cloud.

• Terrestrial vs. Jovian (Giant) planets

- High vs. low density
 - Rocks vs. mostly gas
- Composition
 - heavy elements vs. primarily H/He
- Difference due to distance from Sun.

Object	% Total Mass
Sun	99.8
Jupiter	0.1
Comets	0.05
All other planets	0.04
Satellites & rings	0.00005
Asteroids	0.000002
Cosmic dust	0.000001

Within the solar nebula, 98% of the material is hydrogen and helium gas that doesn't condense anywhere.

During planet formation in Solar Nebula: Presence of ice

- **→** more material for core
- → could gravitationally attract large masses of hydrogen & helium gas.

Terrestrial Planets

Earth

- Differentiated:
 - Iron/nickel core
 - Mantle of lighter rock
 - Thin crust on top
- Plate Tectonics
- Evolution of atmosphere
 - Thick $CO_2 \rightarrow life \rightarrow N_2, O_2$
 - Current global warming
 - Greenhouse effect
 - Man-made CO₂

• (Moon)

- Impact craters as clocks
- Old highlands (4.1-4.4 billion yrs)
 - Heavily cratered
- Maria (3.3- 3.8 billion yrs)
 - Fewer craters
- Rocks from each brought back by Apollo astronauts.
 - Age dating
 - Chemical composition
- Tidally locked to Earth
- Formation of Moon
 - Giant Impact is current favorite theory... collision between Earth & Mars-sized object.

Mercury

- Closest to Sun, eccentric orbit.
- Airless, heavily cratered.
- Hot, but (slightly) colder than Hell.
- Very dense mostly iron-nickel core.
- Geologically dead (probably)
 - But rupes → shrinkage at early time.
- Rotates in 2/3 of its orbital period
 - Tidal locking with a twist.

Terrestrial Planets (continued)

Venus

- Differentiated like Earth
 - But no tectonic plates.
- Surface mostly studied by radar
 - Large volcanoes
 - "Continents" pushed up by tectonic flows in mantle.
 - Recent lava flows, constant resurfacing.
 - Crater density → very young surface
 - only 800 million yrs old.
- Thick CO₂ atmosphere
 - Result of runaway greenhouse effect.
 - Keeps surface very hot (900F).
 - Lead, brimstone (sulfer) are molten.
- Retrograde rotation
 - Probably due to giant impact.

Mars

- 50% smaller diameter than Earth
- 1.5 times further from Sun.
- Gigantic volcanoes.
- 50% highland "continents"
 - Tharsis bulge.
 - Cracked open to form Valles Marineris.
- 50% low-lying lava plains.
- Atmosphere
 - CO₂, like Venus, but very thin.
 - Liquid water currently impossible.
- Climate change
 - Loss of atmosphere
 - Low escape velocity
 - Solar wind
 - Could not retain heat
 - Water froze out
 - even less heat retained
 - 2 Rovers currently searching for evidence of past water.
- Life?
 - Viking landers found no sign.
 - Questionable data in meteorite.

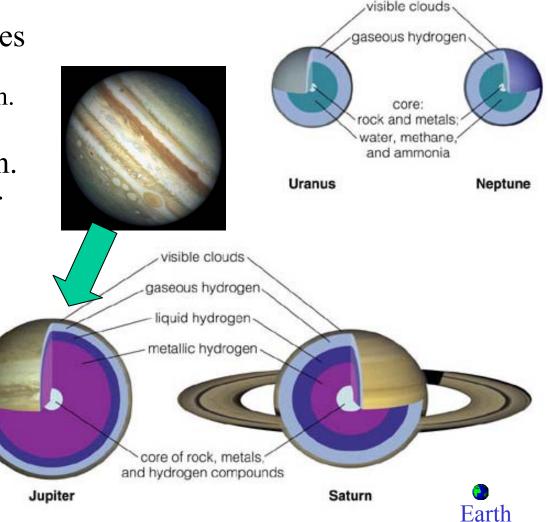
The Giant Planets Jupiter – Saturn – Uranus - Neptune

• 14-300 x more massive than Earth.

Massive H, He atmospheres

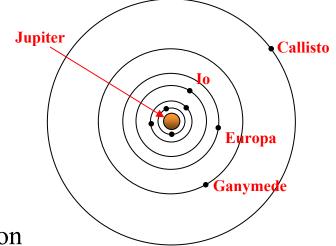
• By far the most abundant elements in the solar system.

 On top of rock/ice core with 10-15 x mass of Earth.


• Lots of weather on Jupiter

• Ammonia (NH₃) clouds

• Strong winds at differer latitudes.


(differential rotation)

- Cyclonic storms
 - Great Red Spot
 - 2 x size of Eartl
 - − 400 yrs so far
- Investigated by Galileo probe.

Moons

- Jupiter's Galilean moons, as we get closer to Jupiter:
 - Callisto ice, geologically dead.
 - Ganymede ice, but geologically active.
 - Europa rock, but covered by ice pack over liquid water.
 - Io rock, extreme volcanic activity.
- Gradient of properties due to increased tidal effects & heating from Jupiter.
- Jupiter's 59 other moons are much smaller.
- Saturn: 33 known moons
 - largest is Titan
 - N₂ atmosphere.
 - Similar to Earth's, but very cold (ethane oceans).
 - Cassini/Huygens probe to land in 2004.

- Triton
 - Neptune's largest moon.
 - Retrograde orbit.
 - 75% rock, 25% ice.
 - Very thin N₂ atmosphere.
- Pluto (& Charon)
 - No spacecraft visits, so little is known
 - Pluto probably quite similar to Triton.
 - Charon is half as big as Pluto.
 - Pluto is probably just the largest Kuiper belt object.
 - Very low mass.
 - Eccentric, tilted orbit.
 - Similar to some comets.

Rings

- All 4 giant planets have rings.
- Rings form inside Roche limit:
 - $P^2 = a^3$ different parts of a moon try to move in orbits with different periods.
 - This tears bodies apart unless gravity (+ internal tensile strength) can hold them together.
 - For orbits inside Roche limit, prospective moons are torn apart.
- But rings constantly replenisheed by material abraded off small moons.
- Jupiter, Uranus, Neptune have very thin rings. Saturn has much larger rings.
- Shepherd satellites
 - moons sweep out divisions, contain rings through gravitational resonances.
- Rings made of ice and small bits of dust.

Comets

- Mostly ice
- Some on highly eccentric orbits
 - Spectacular tails when close to Sun.
 - Melted ice is driven off by solar radiation, solar wind.
- Most come from Oort Comet Cloud at edge of solar system.
 - Some from Kuiper Belt, just beyond Pluto.

Asteroids

- Small rocky bodies in orbit about sun.
 - Left over from formation of Solar System.
- Most, but not all, in asteroid belt.
 - Some cross Earth's orbit

Meteorites

- Asteroids that hit Earth and don't burn up in atmosphere.
- Analyzing them →
 - Age of solar system (4.5 billion yrs)
 - Initial chemical composition of solar system.