What Powers the Sun?

- Need to provide
 - $4x10^{26}$ watts
 - $< 2x10^{33}$ grams (mass of Sun)
 - > 4.5 billion years (age of Earth)
- Nuclear fusion reactions:
 - $4 \times {}^{1}H \rightarrow {}^{4}He + neutrinos + energy$

Computing the structure of the sun

- For every point in the Sun, we want to compute
 - temperature
 - pressure
 - density
 - composition
 - energy generation
 - energy transport mechanism
- We can write 4 equations expressing the following ideas:
 - The Sun is a gas.
 - The sun is neither contracting nor expanding.
 - The sun is neither heating up nor cooling down.
 - Specify method of energy transfer.

• Photosphere

- Deepest layer from which light directly escapes into space.
- Low density and pressure (10⁻⁴, 0.1 x Earth's surface values)
- But *hot* (5800° K)
- Granules (in photosphere)
 - Tops of convection currents.
- Chromosphere
 - Transparent gas layer, reaches 2000-3000 km above photosphere.
 - T ~5,000-10,000° K
 - Photosphere = point we can no longer see through chromosphere.
- Corona
 - $T > 1,000,000^{\circ} K$
 - Very low density: 10⁻¹⁰ bar.
 - Heated by magnetic energy.
 - Several x diameter of photosphere.

30 40 50 6 kilometers

Magnetic Fields Control Much of Sun's Surface Activity

The Sun's magnetic field

• Due to "winding up" of Sun's magnetic field.

Here's what we observe about stars.

Predicted paths of stars on HR diagram

[see figs. 12.10, 12.12]

Star clusters are snapshots of stellar evolution

- All stars in a given cluster formed at ~ same time.
- But with a wide range in masses.
- Main sequence turnoff

= stars just finishing main sequence evolution.

To see how it all works, look at:

http://www.mhhe.com/physsci/astronomy/applets/Hr/frame.html http://www.pa.msu.edu/courses/isp205/sec-3/hr.mpg

Stellar Evolution

Here: Evolution through		Mass loss:	There: Final state.	
$M_{initial} > 2M_{\odot}$	Nuclear burning all the way to iron.	• Planetary nebulae	$M_{final} > 3M_{\odot}$	Black hole. Neutron star
${ m M_{initial}}$ < 2 ${ m M_{\odot}}$	Nuclear burning shuts off after He- flash.	Eta CarinaeSupernovae	$M_{final} < 1.4 M_{\odot}$	White dwarf.

Formation of stars (and planets)

- Molecular (gas) clouds
 - Up to ~ $10^5 M_{\odot}$
 - 100's of LY in diameter.
- High density by interstellar medium standards
- Shielded from UV radiation by dust → atoms are combined into molecules.
 - H_2 ...and also CO plus other more complex molecules.
- Preferred place for stars to form.
 - In spiral arms of our Galaxy.

- Some examples of star forming regions, discussed in class:
 - Orion Nebula
 - M 16 Pillars of Creation
- Star formation \rightarrow disks around stars
 - Planets form in these disks.
- Planets around other stars
 - Over 100 known
 - Usually detected through their effect on motion of the parent star.
- Possible sites of life... in our Solar System? Elsewhere?

The Milky Way

- Gas, large fraction of stars in thin disk
 - $\sim 1000 \text{ LY thick}$
 - Spiral structure
- Spherical halo
 - ~150 globular clusters
 - Spherical distribution of stars
- Nuclear bulge

The chemical evolution of our Galaxy:

- All elements heavier than H and He were made in *stars*.
- $H \rightarrow He \rightarrow C, N \rightarrow \rightarrow Fe$
 - Occurs in interiors of various types of stars.
- Fe → heavier elements (U, etc).
 - In supernova explosions.
- Recycling back into interstellar gas
 - Planetary nebulae, supernovae, etc.

