

Degenerate Era

- $10^{14} 10^{37}$ yrs.
- Almost no further radiation from stars.
 - · Cold, dark universe.
- But...
 - Occasional collisions between brown dwarfs → new low-mass stars (10 to 100 in existence per galaxy at any given time).
 - Occasional collisions of degenerate stars → supernova.

Black Hole Era
10³⁷ - 10¹⁰⁰ yrs.
Degenerate stars have all disappeared through proton decay (maybe)

p → e⁺, neutrinos, gamma rays
No more atoms

Dark matter previously swept into degenerate stars and annihilated (?????)
Only black holes are left.
But black holes also evaporate *Hawking radiation*: very slow conversion of gravitational energy back to particles or photons.

Dark Era
Essentially nothing left except hugely redshifted CMB photons.

What's outside the Universe?

- Other universes, not intersecting with our Universe??
- Some magic numbers:
 - At t = 1 second, our Universe defined by:
 - · Ratios of
 - Energy Density. Matter:Kinetic-energy:Cosmolgical-constant-energy.
 - Numbers of particles. Photons:Normal-matter:Dark-matter
 - Amplitude of density fluctuations $\sim 10^{-5}$
 - Imprinted by Planck Time: ratios of physical constants.
 - Example: electrostatic force 10^{36} x stronger than gravitational force.
 - Different values in other universes?

• *Anthropic Principle*: our particular universe is suitable for us to live in because otherwise we would not be alive to know about it.

Good book: Before the Beginning, by Martin Rees

Announcements

Homework.

- Set 8 now open.
 - due late at night Friday, Dec 10
 - (3AM Saturday Nov. 11)
- Set 7 answers on course web site.

Review for Final.

• Right Now!

Course Evaluation. https://rateyourclass.msu.edu

Final Exam.

- Monday December 13.
- 8-10 PM. (PM = in the *evening*!!!).
- In the usual classroom (Natural Resources 158).
- Counts as 1.5 midterms.
- 70 questions.
- 2/3 over material since Midterm 3.
- 1/3 over earlier material.
 - reworded midterm questions.
 - + a few new general questions.
 - + a few about *telescopes*.

Galaxies

- Composed of 100 billion stars or more.
- Main types are
 - Ellipticals
 - Spirals
 - Regular spirals
 - Barred spirals
 - Irregulars
- Our galaxy (the Milky Way) is a spiral with a weak bar.
- Mass of galaxies dominated by Dark Matter.
 - Detected by studying motions of stars around galactic centers.

2 500 000 LY

Galaxy Formation:

Top-Down Model

- Collapse \rightarrow rotating disk
- Halo (Globular clusters & halo stars) formed during collapse.
 - · Once formed, stars don't collide.

Time \rightarrow

- · Small structures form first Dwarf galaxies
 - · Globular Clusters
- · Galaxies grow by cannibalism
- Ellipticals formed by mergers of spirals (?)

Summary: How do we know the universe is expanding from a very much smaller size?

- Hubble's Law
 - Everything is moving away from everything else.
- Cosmic Microwave Background (CMB)
 - Universe used to be much hotter than it is now → it has changed and evolved.

Some Key Numbers		
What?	Value	How do we know?
Age of Solar System (& Earth)	4.54 billion years	Direct radioactive decay dating of oldest meteorites.
Lifetime of Sun	10 billion years	Computer simulations of stars.
Age of Universe.	13.7 billion years	Recent measurements that Universe is flat and accelerating.
% of mass of Solar System that is in the Sun.	99.8%	Measuring mass of Sun & planets using Newton's/Kepler's laws.
Number of stars in our Milky Way Galaxy	100 billion	We can count them.
Number of observable galaxies similar to Milky Way	100 billion or more	We can see them with big telescopes.
% of all matter that is unseen Dark Matter	90%	Gravitational effect on normal matter & on path of light.
% of content of Universe that is not any kind of matter	73%	Recent measurements that Universe is flat and accelerating.