Equations of Physics for ISP 209

Mechanics

○ Newton's second law
force $=$ mass x acceleration $\mathrm{F}=\mathrm{ma}$ or $\mathrm{a}=\mathrm{F} / \mathrm{m}$
The unit of force is the Newton (N).
O Mass and Weight
weight $=$ mass x acceleration due to gravity

$$
\mathrm{W}=\mathrm{mg}
$$

Weight is a force (the force due to gravity) so the unit of weight is the Newton (N).

○ Velocity of an object experiencing constant acceleration
present velocity $=$ initial velocity

+ acceleration x time

$$
\mathrm{v}=\mathrm{v}_{0}+\mathrm{at}
$$

The unit of velocity is m / s.
The unit of acceleration is $\mathrm{m} / \mathrm{s}^{2}$.
© Position (or, coordinate) of an object
experiencing constant acceleration
present position $=$ initial position

+ initial velocity x time
+0.5 acceleration x time
squared
$x=x_{0}+v_{t 0}+\frac{1}{2} a t^{2}$
The unit of distance is the meter (m).
© Definition of Work
work $=$ force x distance
$W=F(\Delta x)$
The unit of work is the joule (J); $1 \mathrm{~J}=1 \mathrm{Nm}$.
© Gravitational potential energy
gravitational potential energy
$=$ mass x acceleration due to gravity x height
$\mathrm{U}=\mathrm{mgh}$
The unit of energy is the joule (J).

○ Linear momentum

$$
\text { momentum }=\text { mass } x \text { velocity }
$$

$$
\mathrm{p}=\mathrm{mv}
$$

○ Kinetic energy
kinetic energy

$$
=0.5 \text { mass } x \text { speed squared }
$$

$$
K=\frac{1}{2} m v^{2}
$$

© Hooke's law for the force of a spring or elastic body,

$$
\begin{aligned}
& \text { restoring force } \\
& =- \text { spring constant } \\
& \quad x \text { displacement from equilibrium } \\
& F=-k X
\end{aligned}
$$

© Centripetal acceleration, the acceleration of an object in uniform circular motion, acceleration $=$ speed $^{2} /$ radius

$$
a=\frac{v^{2}}{r} \text {, directed toward the center }
$$

© The ideal gas law

$$
\mathrm{p}=\mathrm{nkT} \text { where } \mathrm{k}=\text { Boltzmann constant }
$$

© Bernoulli's equation. Along a streamline of fluid flow,

$$
\mathrm{p}+\frac{1}{2} \rho \mathrm{v}^{2}+\rho \mathrm{gh}=\mathrm{a} \text { constant }
$$

For an incompressible fluid in equilibrium, $p+\rho g h$ is constant throughout the fluid.

O Newton's Theory of Universal Gravitation. The gravitational forces for two masses m_{1} and m_{2} are equal but opposite attractive forces with magnitude

$$
F=\frac{G m_{1} m_{2}}{r^{2}} \text {, where } G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~s}^{-2} \mathrm{~kg}^{-1} .
$$

© Power is energy per unit time,

$$
P=\frac{\Delta E}{\Delta t} .
$$

The unit of power is the watt $(\mathrm{W}) ; 1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$.
© Pressure is force per unit area $p=\frac{F}{A}$.

