A hint in calculating fractional uncertainties with small error bars: say you measure $1.0 \text{ cm} \pm .001 \text{ mm}$. That's a fractional uncertainty of 10^{-4}m or .01%. It may make sense if all your uncertainties are this small to factor them out before putting things in the square roots. So you might record the uncertainties as say $\delta x = .04\% \delta y = .03\%$ etc, but do a calculation by taking out the big factor like this (effectively a unit change in the uncertainties, by factoring out the scale of .01%):

Q = x y $\delta Q/Q = \sqrt{[(.01\%)^2 \{ 4^2 + 3^2 \}]} = .01\% \sqrt{\{ 4^2 + 3^2 \}}$ or $\delta Q/Q = .01\% \sqrt{25} = .05\%$

Here are some concrete suggestions about how to use tables to organize your calculations and results for Experiment 1. In future experiments, you will be expected to come up with such an organization on your own. The fractional errors are important (for you and the grader) to help assess whether the fractional errors of your calculated quantities are sensible. You of course should be suspicious if your % error goes down from one step to another (why?). For a reminder on the t value calculation (something very important you will use over and over this term), please refer to the Taylor handout elsewhere on the course web site.

Input data Tables: (note: give the units for the table and you won't have to write them on the values or headings.

Table	units: cr	n for leng	ths and	uncertain	nties					
object	method	1	δl	δl(%	ó) w	δw	δw(%)	h	δh	δh(%)
Make	one row	per meas	uremen	it. You w	vill have	e similar co	lumns for	the cyli	nder and pi	pes.
Calcul	lated dat	a (assumi	ng you	call the d	ensity r	·)				
Table object	units: cn method	n ³ for vol V (cm ³	ume an) δV	d uncerta (cm^3) a	inties; g SV(%)	grams for m m(gm)	hass; gram δm(gm)	/cm ³ for $\delta m(\%)$	r density r δr	δr(%)
Again	, use one	e row per	measur	ement.						
Then	summari	ze in a fir	nal table	2:						
Table object	units: de metho	ensity in g od r(g/cr	grams/ci m^3) δ	m^3 or(g/cm^3)	δr(%)	r(alloy)	t value	alloy	name	
You n reasor	night nee able t va	ed more th	nan one	row per 1	measure	ement if 2 c	or 3 alloys	match y	our measu	red density with a

Or if there are many others with |t| < 2, you could list the alloys.