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Most Important Things for You to Know about Error Analysis: 
J. Linnemann 

Revised October 13, 2004 
Justify your uncertainty:   Give a specific reason you chose δx as the uncertainty for the measurement of x.  
See examples in Taylor §1.5; §3.1-3.2; and §1.6, §4.1-4.6 for standard deviation and standard deviation of a 
mean for repeatable measurements. 
        
Compatibility (§2.4-2.5): The whole point of quantitative measurement with uncertainties is to test 
hypotheses, and compare results.  Say you measure q, and you compare it to p (the expected value).  
Define the discrepancy as the difference of your result from the result expected by some hypothesis: 

 D = q – p = measured - expected       .  
The best way to describe the degree of discrepancy of p and q is in terms of the number of standard 
deviations (the “t value”) of their difference from expectations: 

  t = D / δD    where δD is the uncertainty of D (its standard deviation, for Gaussian uncertainties).  
The “two standard deviations” rule says p and q are compatible as long as |t| ≤ 2 .  

Typically δD = √(δq2 + δp2);  or just δq if p is well known, so δp is tiny. Best practice is to calculate t, 
then say something like “the difference is 1.6 times its uncertainty, so the measurements are compatible by 
the 2 standard deviation rule.”  If |t| > 2, we would call p and q statistically incompatible, or call their 
difference statistically significant. 

If your uncertainties are Gaussian, and correctly estimated, and the assumptions (hypothesis) leading 
to the expected value are also correct, a |t| > 2 deviation would occur by chance only about 5% of the time.  
So large |t| values suggest real disagreement from what you expected, while small |t| values are compatible 
with your hypothesis—or at least not proven to disagree.  But if you measure poorly (δD is large), your result 
will be compatible with most anything: not a very useful measurement. 

Occasionally we use a simpler criterion compares |D| with δq + δp (the worst case for δD, but 
allowing only 1 standard deviation difference): this is just “do the error bars touch”. 

Sometimes we are also interested in the fractional deviation the measured value from what we 
expected, which is just D/p = (q-p)/p; the % deviation or % difference is the same thing expressed in 
percent.  Just because the percent difference is small, does not make it insignificant.  That’s what the t 
criterion is for. But D/p is all we can report if we don’t know δD. 
 
Know the Uncertainty Calculation Formulae (§3.3-3.7; 3.11) on inside covers of Taylor, and how/when 
to use them.   Some hints: 
The fraction uncertainties δq/q, δx/x, δy/y all have NO UNITS (can write as a fraction, or as %, but watch 
the factor of 100!) 

But to get δq, don’t forget to multiply q × (δq/q) 
For q = x ± y,   x, y, q, dx, dy, dq all must have the same units (will want to add q + dq, e.g. as error bars) 
 
How to check your calculations to see if they make sense: 
q = x + y          always must have: δq > max (δx , δy) 
q = x*y or x/y always must have δq/q > max (δx/x, δy/y) 
 
Independent measurement: no relationship in the imperfections between the measurements; e.g. 2 students 
measure the same distance each with a different, but good, ruler.  A measurement dominated by a systematic 
error (same shrunken ruler used by both students) would produce results that aren’t independent.  See 
Chapter 4; needed to apply Chapter 3 formulas. 
 
Random: you expect to get slightly different values each time you measure it: due to reading uncertainties, 
varying judgments, uncontrollable factors, or inherent properties of the measurement. 
 
For examples, see next page. 
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Example of q = x/y Uncertainty Calculation:      x = 10      δx = .1     y = 2.7       δy = .2    so q = 3.7 
 Often easiest to do in terms of %, especially since really need uncertainties to only 1 significant 
figure 
 δq/q = √(1% + 8%) ≈ 8%   so  δq ≈ .08×q ≈ .3  (notice 8% → .08, the factor of 100) 
 
Whip out your calculator now: Let’s try    r=10     and    δr = .1, so what’s the fractional error for r?      

δr/r = 1%  Now say q= r2 then what’s δq/q = ?  
 
From Eq 3.23, 3.26:   

δq / q = ( |dq/dr| δr ) / r2 = 2 δr / r = 2%     
For comparison, calculate directly (the most general way, rather than the Chapter 3 formulas, which rely on 
first derivative approximations):  

(q + δq)/q = (r+δr)2 / r2 = 102.01/100 = 1.0201 =  (q + δq) / q , so δq/q = 2.01%  (same as δq → 0) 
 
A More Complicated Example Calculation (See Step by Step: see Taylor Chapter 3.8) 
 
q = x2 y + z1/ 3     x = 10 ± .1     y = 20 ± .2       z = 10000 ± 1800 

δx/x = 1% δy/y = 1%   δz/z = 18% 
 
let w = z1/ 3  = 15.8    x2y =2000    and q = 2015.8 
 
Let’s start with the product term :   x2y  
 
δ (x2y) / (x2y) =  √{ (δx2/x2)2 + (δy/y)2 } =   √{ (2 ×1%)2 + (1%)2 } = 2.2 %  ≈ 2%  
 notice we have used δ x2 / x2 = 2 δx/x: the 2 goes inside the parentheses! 
 
so δ x2y = x2y × (δ x2y / x2y) = 2000 × (2%) = 40 
 
Now δw/w = 1/3 (δz/z) = 1/3  × 18%= 6%, so   δw = 6% × w  ≈ .9  
 notice that 6% is NOT rounded up to 10%, nor is .948 rounded up to 1 
 in each instance we keep the first significant digit, though in the middle of a long calculation, it might 
make sense to keep one extra digit. 
 Notice also that w is better known than z is, and in fact has more significant digits: 15.8 ± .9 
compared to (10.0 ± 1.8) × 103 ! 
 
Finally,  since q = x2y + w,  δq= √ { (40)2 + (.9)2 } ≈ 40 
 
So q = 2015.8 ± 40, or 2020 ± 40 = (2.02 ± .04) × 103 after significant figures. 
 


