Justify your uncertainty: Give a specific reason you chose δx as the uncertainty for the measurement of x. See examples in Taylor $\S 1.5$; §3.1-3.2; and §1.6, §4.1-4.6 for standard deviation and standard deviation of a mean for repeatable measurements.

Compatibility (§2.4-2.5): The whole point of quantitative measurement with uncertainties is to test hypotheses, and compare results. Say you measure q, and you compare it to p (the expected value). Define the discrepancy as the difference of your result from the result expected by some hypothesis:

$$
D=q-p=\text { measured }- \text { expected }
$$

The best way to describe the degree of discrepancy of p and q is in terms of the number of standard deviations (the " t value") of their difference from expectations:
$\boldsymbol{t}=\mathbf{D} / \boldsymbol{\delta} \mathbf{D}$ where $\delta \mathrm{D}$ is the uncertainty of D (its standard deviation, for Gaussian uncertainties). The "two standard deviations" rule says p and q are compatible as long as $|t| \leq \mathbf{2}$.

Typically $\delta D=\sqrt{ }\left(\delta q^{2}+\delta p^{2}\right)$; or just δq if p is well known, so δp is tiny. Best practice is to calculate t, then say something like "the difference is 1.6 times its uncertainty, so the measurements are compatible by the 2 standard deviation rule." If $|t|>2$, we would call p and q statistically incompatible, or call their difference statistically significant.

If your uncertainties are Gaussian, and correctly estimated, and the assumptions (hypothesis) leading to the expected value are also correct, a $|t|>2$ deviation would occur by chance only about 5% of the time. So large $|t|$ values suggest real disagreement from what you expected, while small $|t|$ values are compatible with your hypothesis-or at least not proven to disagree. But if you measure poorly ($\delta \mathrm{D}$ is large), your result will be compatible with most anything: not a very useful measurement.

Occasionally we use a simpler criterion compares $|D|$ with $\delta q+\delta$ p (the worst case for δD, but allowing only 1 standard deviation difference): this is just "do the error bars touch".

Sometimes we are also interested in the fractional deviation the measured value from what we expected, which is just $\mathrm{D} / \mathrm{p}=(\mathrm{q}-\mathrm{p}) / \mathrm{p}$; the $\%$ deviation or \% difference is the same thing expressed in percent. Just because the percent difference is small, does not make it insignificant. That's what the t criterion is for. But D / p is all we can report if we don't know $\delta \mathrm{D}$.

Know the Uncertainty Calculation Formulae (§3.3-3.7; 3.11) on inside covers of Taylor, and how/when to use them. Some hints:
The fraction uncertainties $\delta \mathrm{q} / \mathrm{q}, \delta \mathrm{x} / \mathrm{x}, \delta \mathrm{y} / \mathrm{y}$ all have NO UNITS (can write as a fraction, or as $\%$, but watch the factor of 100 !)

But to get δq, don't forget to multiply $\mathbf{q} \times(\mathbf{\delta q} / \mathbf{q})$
For $\mathrm{q}=\mathrm{x} \pm \mathrm{y}, \mathrm{x}, \mathrm{y}, \mathrm{q}, \mathrm{dx}, \mathrm{dy}, \mathrm{dq}$ all must have the same units (will want to add $\mathrm{q}+\mathrm{dq}$, e.g. as error bars)
How to check your calculations to see if they make sense:
$\mathrm{q}=\mathrm{x}+\mathrm{y} \quad$ always must have: $\quad \delta \mathrm{q}>\max (\delta \mathrm{x}, \delta \mathrm{y})$
$\mathrm{q}=\mathrm{x}^{*} \mathrm{y}$ or x / y always must have $\quad \delta \mathrm{q} / \mathrm{q}>\max (\delta \mathrm{x} / \mathrm{x}, \delta \mathrm{y} / \mathrm{y})$
Independent measurement: no relationship in the imperfections between the measurements; e.g. 2 students measure the same distance each with a different, but good, ruler. A measurement dominated by a systematic error (same shrunken ruler used by both students) would produce results that aren't independent. See Chapter 4; needed to apply Chapter 3 formulas.

Random: you expect to get slightly different values each time you measure it: due to reading uncertainties, varying judgments, uncontrollable factors, or inherent properties of the measurement.

For examples, see next page.

Example of $q=x / y$ Uncertainty Calculation: $\quad x=10 \quad \delta x=.1 \quad y=2.7 \quad \delta y=.2 \quad$ so $q=3.7$
Often easiest to do in terms of $\%$, especially since really need uncertainties to only 1 significant figure
$\delta \mathrm{q} / \mathrm{q}=\sqrt{ }(1 \%+8 \%) \approx 8 \%$ so $\delta \mathrm{q} \approx .08 \times \mathrm{q} \approx .3($ notice $8 \% \rightarrow .08$, the factor of 100$)$
Whip out your calculator now: Let's try $\quad \mathrm{r}=10 \quad$ and $\quad \delta \mathrm{r}=.1$, so what's the fractional error for r ? $\delta \mathrm{r} / \mathrm{r}=1 \% \quad$ Now say $\mathrm{q}=\mathrm{r}^{2}$ then what's $\quad \delta \mathrm{q} / \mathrm{q}=$?

From Eq 3.23, 3.26:
$\delta q / q=(|d q / d r| \delta r) / r^{2}=2 \delta r / r=2 \%$
For comparison, calculate directly (the most general way, rather than the Chapter 3 formulas, which rely on first derivative approximations):

$$
(\mathrm{q}+\delta \mathrm{q}) / \mathrm{q}=(\mathrm{r}+\delta \mathrm{r})^{2} / \mathrm{r}^{2}=102.01 / 100=1.0201=(\mathrm{q}+\delta \mathrm{q}) / \mathrm{q}, \text { so } \delta \mathrm{q} / \mathrm{q}=2.01 \%(\text { same as } \delta \mathrm{q} \rightarrow 0)
$$

A More Complicated Example Calculation (See Step by Step: see Taylor Chapter 3.8)
$\begin{array}{cccc}\mathrm{q}=\mathrm{x}^{2} \mathrm{y}+\mathrm{z}^{1 / 3} & \mathrm{x}=10 \pm .1 & \mathrm{y}=20 \pm .2 & \mathrm{z}=10000 \pm 1800 \\ \delta \mathrm{x} / \mathrm{x}=1 \% & \delta \mathrm{y} / \mathrm{y}=1 \% & \delta \mathrm{z} / \mathrm{z}=18 \%\end{array}$
let $\mathrm{w}=\mathrm{z}^{1 / 3}=15.8 \quad \mathrm{x}^{2} \mathrm{y}=2000 \quad$ and $\mathrm{q}=2015.8$
Let's start with the product term : $x^{2} y$
$\delta\left(x^{2} y\right) /\left(x^{2} y\right)=\sqrt{ }\left\{\left(\delta x^{2} / x^{2}\right)^{2}+(\delta y / y)^{2}\right\}=\sqrt{ }\left\{(2 \times 1 \%)^{2}+(1 \%)^{2}\right\}=2.2 \% \approx 2 \%$ notice we have used $\delta \mathrm{x}^{2} / \mathrm{x}^{2}=2 \delta \mathrm{x} / \mathrm{x}$: the 2 goes inside the parentheses!
so $\delta x^{2} y=x^{2} y \times\left(\delta x^{2} y / x^{2} y\right)=2000 \times(2 \%)=40$
Now $\delta \mathrm{w} / \mathrm{w}=1 / 3(\delta \mathrm{z} / \mathrm{z})=1 / 3 \times 18 \%=6 \%$, so $\delta \mathrm{w}=6 \% \times \mathrm{w} \approx .9$
notice that 6% is NOT rounded up to 10%, nor is .948 rounded up to 1
in each instance we keep the first significant digit, though in the middle of a long calculation, it might make sense to keep one extra digit.

Notice also that w is better known than z is, and in fact has more significant digits: $15.8 \pm .9$
compared to $(10.0 \pm 1.8) \times 10^{3}$!
Finally, since $q=x^{2} y+w, \delta q=\sqrt{ }\left\{(40)^{2}+(.9)^{2}\right\} \approx 40$
So $\mathrm{q}=2015.8 \pm 40$, or $2020 \pm 40=(2.02 \pm .04) \times 10^{3}$ after significant figures.

