
 Undergraduate Physics Labs, Dept. of Physics & Astronomy, Michigan State Univ. 

Experiment 1 

Simple Measurements and Error Estimation 
Reading and problems (1 point for each problem): 

Homework 2: turn in as part of your preparation for this the first week of this experiment. 

Read sections 3.1-3.10 of Taylor (you can skip 3.2).  Read again the handout on the important things 
in Taylor.  Look carefully at the definition of independence in the handout.  

Do problems 3.12, 3.16 (see below), 3.18(see below), 3.22, 3.23, 3.28; they (and the 
analysis and discussion requested below) will help prepare you for the uncertainty 
calculations needed for this lab.   

For 3.16: calculate only for the sums a+c and a+e. Summarize your calculations in a table and 
comment on the comparative sizes of the uncertainties in each problem.  You can use either a 
calculator or a spreadsheet for your calculations. 

For 3.18, only do the calculations for a+b+c and m b/ t.  Before you start, predict which errors 
will be most important in each case.  Show the formulas you will use, and arrange your results 
in a table.  Explain whether the uncertainty of a+b-c will be the same, or different from, the 
uncertainty of a+b+c.  From this answer, explain whether the fractional uncertainty of a+b+c 
will be larger or smaller than the fractional uncertainty of a+b-c, and why.  Explain which 
uncertainty was most important in each case.  Why did the importance of δb change from the 
a+b+c case to the  m b/ t case? 

For 3.22, start by evaluating the fractional uncertainty of I, and V in percent, then calculate 
δP/P in percent following the example on p 62.  Finally, derive δP from δP/P.  For 3.22b, see 
if you can avoid repeating the entire calculation. For 3.23 (and any calculations in the lab 
involving products!) proceed in the same way.  A very useful step is to pause and explain if 
any of the terms are obviously negligible before performing the final calculation of the 
fractional uncertainty.  Also, explain why the fractional uncertainty of R2 is twice that of R. 

Homework 3: Turn in at start of 2nd week of experiment.  

Read chapter 4: introduction, sections 4.1, 4.6 can be read together; then read the rest of 
chapter 4; then read chapter 5 through section 5.2.  Do problems 4.2, 4.10, 4.16, and 4.23 .   

For problem 4.2, do the calculation laid out in table style initially so you see exactly how it 
works; the entries in the table you can calculate either by a spreadsheet or with your 
calculator.  But if you use a spreadsheet, you should spot-check results with your calculator!  
For 4.2 and 4.10, the checking calculations requested can be done with either your calculator, 
or (easier) Excel—but you should really do them (the purpose is to be sure you know how, 
and the check is that you get the right answer).  You can use either explicit formulas or the 
built-in functions. 
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Experiment 1 Goals 
1. Perform simple measurements as accurately as possible and to estimate 

uncertainties in these measurements. 
2. Understand the strengths and limitations of different length measuring 

instruments. 
3. Practice computing errors for quantities derived from several measurements. 
4. Distinguish between systematic and random errors. 
5. Learn one method for estimating the random errors. 
6. Learn how known random errors make it possible to estimate systematic 

errors. 

Theoretical introduction 
The main purpose of this experiment is to introduce you to methods of dealing with 
the uncertainties of the experiment (for more background, see the Appendix). The 
basic procedures to correctly estimate the uncertainty in the knowledge of the 
measured value (the error of the measurement) include:  

• Estimation of the uncertainty in the values directly measured by, or read from, 
the measurement device (directly measured quantities, Taylor, Chapter 1); 

• correct treatment of the random errors and systematic errors of the experiment 
(Chapters 4 and 5); 

• calculation of the errors of the quantities which are not measured directly (the 
propagation of errors, Chapter 3); 

• rounding off the insignificant digits in the directly measured and calculated 
quantities (Chapter 2 and the Appendix to this lab). 

You will be dealing with all these topics in more detail throughout the semester, 
but to understand this introduction to the topics, you will have to read much of the 
first 5 chapters of Taylor to see what is happening.  

1. Preliminary discussion (15-30 minutes). 
Before the lab, you are asked to read and understand the theoretical material for this 
lab (Exp1 and Taylor). Before the experiment starts, your group needs to decide which 
information will be relevant to your experiment. Discuss what you will do in the lab 
and what preliminary knowledge is required for successful completion of each step.  

Think hard about organizing your work in an efficient way. What measurements 
will you need to make? Go through your lab manual with a highlighter, then make 
checklist of the needed measurements. What tables or spreadsheets will you need to 
make to organize the calculations data? How should you use Kgraph to expedite your 
calculations and unit conversions (when necessary)?  What tables will you need to 
summarize your analysis and conclusions from the data? This lab will have more 
explicit reminders about tables than future labs, but you should be thinking about this 
organization of data taking, data reduction, and summarization in every lab. 
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Questions for the preliminary discussion 

You should write your own answer to each question in your lab book, but leave space 
to change it after discussion.  If you do change your answer, say why. 

1.1 Suppose during each of several measurements we find a value, which lies in the 
same interval of the scale of the measuring device. For example, each time we 
measure the length to be between 176 and 177 mm, with the length between the ticks 
on the ruler equal to 1 mm. How do we estimate an uncertainty in the measured length 
in this case?  

1.2 Now suppose we use a much more precise device (say a laser micrometer). Due to 
a higher precision, this device can resolve the miniscule changes in the length due to 
the random mechanical deformations of the object, and in each measurement we will 
see the slight unsystematic changes in the observed length. From these data, how can 
we find the most likely value of the length? How can we characterize numerically the 
typical variation in the measurements? Which statistical measures and formulas will 
we use for these two points?  (Hint: see Chapter 4 of Taylor). 

1.3 Next, we are going to find out if the two independent measurements from 1 and 2 
are consistent with each other. Which procedure will we use? Is there a quantitative 
method to find out if two measured lengths are in agreement? Is there a quantitative 
method to estimate how certain our conclusion about the agreement or the 
disagreement of these measured values is?  

1.4 If we are going to use the results of our measurements to calculate some other 
quantities (e.g., calculate the density of the rod using the measurements of its 
dimensions and the mass), which formulas will we use to calculate the mean values 
and the uncertainties of these quantities?  

1.5 In our calculation, the calculator (computer) will typically return the results with as 
many digits as possible, including digits well beyond our measurement uncertainty. 
What procedure will you follow to systematically get rid of these insignificant digits? 

1.6 From the homework problems, it was evident that much labor can be saved by 
judicious simplification of the uncertainty calculations.  If you choose to do so, how 
will you justify approximations to the uncertainty calculations? 

1.7 The measurement of the density of the pipes poses special problems, which only 
begin with obtaining a mathematically correct formula for the volume: one should also 
consider which form to put the formula to best minimize the fractional uncertainty in 
the volume.  Discuss which instrument(s) would be best for this measurement.  Record 
your choices and your reasons.  As part of the discussion, consider how your answer 
would change if the diameter of the pipe were much larger, or much smaller; and if the 
wall was much thicker or thinner. 
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Part I: Density Measurements 

2. Introduction 

Your text (Sec. 1.3, p. 5) describes how Archimedes was able to determine the 
composition of a king's crown by measuring its density. We will attempt to perform a 
similar exercise, but we shall use copper instead of gold. Copper has a density of 8.91 
g/cm3at 20 degrees Celsius (C). We will consider later what to do if the temperature is 
not exactly 20 degrees C. Your task today is to measure the density, calculate the 
appropriate uncertainties and decide whether your measurement agrees with the given 
value.  

Please report both % and absolute uncertainties for your final values; using % 
uncertainty in your uncertainty calculation tables will usually make things much 
clearer, both for you and the grader. 

In our lab, we will use rulers, vernier calipers and micrometers. Discuss in your group 
the following questions:  

2.1 Which of these instruments is the most precise; the least precise? How do you 
know? In particular, is the caliper more precise than the ruler? Hint: If you don’t 
see how to use the caliper, refer to the Appendix. 

2.2 What tables will you need for the measurements below?  For the uncertainty 
calculations? 

Now begin your measurements. 

Write down in your lab notebook the sample code for the unknowns you are 
measuring.  

Write down the uncertainties of the length measurements with each of these 
instruments.  Use the ruler to measure the three dimensions of the block. Repeat these 
measurements with the vernier caliper and the micrometer. Assign uncertainties to 
your measurements. For each instrument, measure the length with the highest 
precision possible.  

Measure the mass of your block and estimate its uncertainty.  

For the ruler measurement, compute the volume of the block and its uncertainty. Make 
two estimates of your uncertainty using alternatively Eqs. 3.18 and 3.19 on p. 61 of the 
text.  

2.3 Which estimate is more appropriate for this calculation? Why?  

Pay attention to the units. In the calculation, follow the rules for rounding off the 
insignificant figures. If the calculation is done correctly, the smallest significant figure 
in the final mean value will be of the same order as the final uncertainty.  
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Compute the density and its uncertainty.  Use Eq. 3.18 on p. 61 of Taylor.  

Calculate the density and its uncertainty using the data obtained with the help of the 
caliper and micrometer. Compare the three measurements (and their inputs and 
uncertainties) in a table! 

Answer the following questions:  

2.4 Is your value consistent with the density of pure copper? Could it, instead, be a 
copper alloy? (Copper alloys (e.g. bronze and brass) have densities which can 
range from 7.5 g/cm3 to 10 g/cm3.). For more information, see the appendix on 
Alloy Densities. Justify your conclusion quantitatively. (Hint: compare the 
discrepancy between the theoretical and experimental values with some other 
number; see the Taylor handout). 

2.5 In the computation of density, what were the greatest sources of uncertainty? 
Which were the smallest? 

2.6 Based on only your measurements made with the ruler, would you arrive to the 
same answer for the Question 1? Why? 

2.7 What systematic errors might we be overlooking? Are any of these big enough to 
affect your estimate of uncertainty? Consider, one at a time, the temperature 
dependence of the density of metal (see below), irregularities in the shape of the 
block, and any other errors you can think of.  Try to give an estimate of the size of 
each effect.  Based on this estimate, could it be an important source of error in 
your density calculation? 

Thermal Expansion 

If a metal is heated, its length increases by an amount ∆L given by:  

TLL ∆⋅⋅α=∆  

where L is the original length, ∆T is the increase in temperature, and α is the thermal 
coefficient of linear expansion. For aluminum, α = 23 x 10-6 (per degree C). For steel, 
α = 11 x 10-6  (per degree C). For copper, α = 17 x 10-6 (per degree C).  

3. Density measurements of other objects 

Perform a density measurement to determine the material of 3 other unknown objects. 
Be sure to record what dimension you measured, the instrument used, and the 
uncertainty. Again, organize in a table, and use uncertainties (and propagation of 
errors) to present the numeric arguments supporting your conclusions.  

In your report, include 3 measured densities of the rectangular block and the densities 
of 3 unknown objects, as well as the relevant uncertainties, and the material or 
materials you deduce them to be made of. 
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II. Random Uncertainties 
In this part of the experiment we ask you to perform one of the simplest of repetitive 
measurements in order to investigate random and systematic errors.  The idea is that 
we will compare the time interval from the large digital clock at the front of the room, 
with a more precise instrument (the hand timers).  We want to perform a test to see if 
the time scale of the digital clock is correct or not—that is, whether using the large 
digital clock would cause systematic errors were we to use it to measure time.   

The problem we have is that although the timers have very accurate time scales, we 
need to use rather imprecise hand-eye coordination to operate them. The systematic 
error of the timers is small, and guaranteed by the manufacturer.  But you will have to 
measure the random error from your hand-eye coordination, since at the start you 
don’t know it.  We will do it by repeating measurements of the same time interval on 
the large digital clock, and using the variation of the measurements to calculate the 
random error in a single time measurement.  We will then use the fact that by 
repeatedly measuring time intervals, we can decrease the uncertainty of our estimate 
of the wall clock counting rate. 

4. Time Measurements 

At the front of the room is a large digital clock. Assume that it counts at a constant 
rate, but do not assume that the rate is one count per second. The clock will count from 
1 to 20, blank out for some unspecified length of time, and then begin counting again. 
To measure the clock's count rate, you will be given a timer whose systematic error is 
less than 0.001 seconds for time intervals of ten seconds or less. However, you will be 
relying on hand-eye coordination, which means your measurements will have random 
uncertainties. Your reaction time is unavoidably variable. You may also be 
systematically underestimating or overestimating the total time.  

Observe the clock.  Write down whether you believe the clock is counting reasonably 
close to one count per second. Also, before doing any measurements, guess how much 
your reaction time would vary from one measurement to the next (this is your initial 
guess for your random error). 

Now choose a counting interval at least 10 counts long, and time 25 of them. Write 
down how many clock counts you are using as the interval.  

One person should time while the other records the data on the data sheet belonging to 
the person timing. To avoid an unconscious skewing of data, the person timing should 
not look at the data sheet until all 25 measurements have been recorded. This is 
essential; otherwise, you will introduce a bias into your measuring procedure! Make a 
few practice runs before taking data. Avoid starting a timing interval on the first count. 
Use the first of three counts to develop a tempo with which to synchronize your start. 
Exchange places with your partner, and time 25 more counting intervals. Thus, each 
person will have a data sheet with 25 timings recorded on it.  Assuming you have 
prepared well for the lab, you should both be able to analyze your own data.  In any 
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case, you should provide your own answers to the questions at the end.  
   

5. Data Analysis 

From your data set of 25 measurements compute the average or "mean" time per 

interval
∑

=

=
N
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, where the Σ stands for a summation, Ti  represent the I-th single 
measurement of the time per interval, and N = 25, the number of measurements. Thus, 
this formula directs you to add up the 25 values of T, and divide by N. (If these 
formulas don’t make sense to you, check Taylor chapter 4 again for the definition of 
the notation). This gives the average time per interval.  Now use this value of 
T  (pronounced “T bar”) to compute the standard deviation, σ, of the values of T, 
defined as:  
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Compare your N=25 value of σ with your previous guess of the variability of your 
reaction time. 

The standard deviation of the mean value you arrived at is related to the standard 
deviation of the individual values: 

Nm
σ

=σ
 

To demonstrate that you understand them, write out the calculations of these three 
quantities explicitly for the first 3 measurements (N=3). You may then use a calculator 
or the computers for the full 25. Find which item from Kgraph Functions | Statistics 
does this calculation for you (how could you check?).  You will need the values of σ 
and σm in what follows. 

Use Kgraph to calculate σ and σm for the first N=3, 5, 10, and 25 (all) of your 
measurements. First predict how you think that each will vary with N.  Then comment 
whether on your prediction for the change as N gets larger is approximately correct.  
Why do σ and σm behave differently? 

The standard deviation of the mean σm , is the best estimate of the uncertainty in the 
measurement of the mean. Note that, unlike the standard deviation, this uncertainty 
can be made arbitrarily small by taking a sufficiently large number of measurements.  

Use Kgraph to make a bin histogram from your twenty-five measurements. The x axis 
should represent the time T, and the y axis should be the number of measurements 
which fall in the kth time bin.  Adjust settings so the bin width is about w 
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= 0.4σ (Show the calculation in your notebook. How can you find the bin width 
Kgraph is using?).    

Clearly mark the points of  T  and T  ± σ for your measurements. These quantities can 
be shown to be the best estimate of your measurement.   The region included in the 
range ±σ should contain about 68% of your data points if your errors are random and 
consequently the distribution of your measurements is normal or Gaussian (Taylor, 
chapter 5). What fraction of your data lies within this range? 

5.1 Extra Credit: (Reference: Chapter 5.2 – 5.3) 

Draw on your stack histogram an appropriate Gaussian distribution given by a curve 
(function) of the form 

2

2
1

)(
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

= σ
TT

AeTg   

To do this, you need values for the constants in g.  For T  and σ, use your best 
estimates for the mean and standard deviation of your time measurements.  Choose A 
to match your histogram .  Hint: what is the value of the function g(T) at T= T?  

Calculate g(T) at five points (Hint: Kgraph and Excel both use exp for the exponential 
function.).  Plot them by hand on your histogram plot. Then connect these points with 
a smooth curve, which should resemble the Gaussian curves in Taylor. With a finite 
number of measurements such as 25, your histogram may not resemble the expected 
"bell" shape curve to a great degree.  

6. Drawing Conclusions from the timing measurements 

6.1 Calculate the time interval per clock tick (How is this related to T?).  Does it 
appear that the clock tick is 1.0 seconds, as we assumed at the beginning?  What is the 
uncertainty in your estimate? 

In other words, is there a significant discrepancy in the time measured by the large 
clock? Note that we have already made the hypothesis that the large digital clock is 
running correctly, and now we want to check whether this hypothesis is in agreement 
with our statistical analysis.  

6.2 Now we will make this test quantitative by calculating the number size of 
discrepancy from expectations in units of the uncertainty of that difference.  The 
discrepancy we want is that between the average time counted, T , with its expected 
value Texp ,assuming 1 count per second.  So, from the Taylor handout, we will use D 
=  T-  Texp .  And we can use σm as our estimate of δD, since that gives our uncertainty 
in how well we know T, and there is no uncertainty in our prediction, Texp .  Then  
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m

TT
t

σ
exp−

=  

This expression is also the same as Eq. 5.67 on p. 150 of your text. Here, in accord 
with standard statistical notation, t has the meaning of the number of the standard 
deviations of the mean needed to cover the difference between the mean and expected 
times. That is,  t is not a time: it has no units since both the numerator and 
denominator are in seconds.  

6.3 Based on this calculation, is Tcompatible with Texp ?  That is, is the discrepancy 
(statistically) significant? 

6.4 Why is σm used instead of σ in the formula above? 

6.5 Suppose you were going to use the timer at the front of the room for timing 
measurements.  Would doing so cause a systematic error in measurements of time 
intervals? 

6.6 Suppose the difference was statistically significant and you needed to use the large 
digital clock as a timer.  Based on your data, can you correct for its systematic error?  
Explain how you would give the best estimate (in seconds) of a time interval of 120 
counts?  What uncertainty would you report for that time interval? 

6.7 Suppose you had recorded only your first 5 measurements. What would you have 
concluded about the existence of a significant discrepancy? Were the remaining 20 
measurements necessary in your opinion? Explain.  
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Appendices 

Appendix 1. Theory of Uncertainties 

Contrary to the naïve expectation, the experiments in physics typically involve not 
only the measurements of various quantitative parameters of nature. In almost all the 
situations the experimentalist has also to present an argument showing how confident 
she is about the numeric values obtained. Among other things, this confidence in the 
validity of the presented numeric data strongly depends on the accuracy of the 
measurement procedure. As a simple example, it is impractical to measure a mass of a 
feather using the scale from the truck weigh station, which is hardly sensitive to the 
weight less than a few pounds. 

Another challenge has to be met when the scientist tries to compare the results of her 
experiment with the data from another experiments, or with the theoretical predictions. 
Since the conditions of the measurement almost always vary from an experiment to an 
experiment, and since they are also different from the idealized situation of the 
theoretical model, the compared values most likely will not match each other exactly. 
The task is then to figure out how important the factors creating this discrepancy are. 
If these factors are stable (do not change from measurement to measurement) and well 
noticeable, they are called systematic errors. If, on the contrary, these factors are more 
or less random and on average compensate each other, they are 
called random, or statistic errors. An important fact is that the uncertainty due to the 
random errors can be reduced by increasing the number of measurements.  

Appendix 2. Significant figures 
In the calculations, it is always important to distinguish significant figures in the 
presented numbers from insignificant. The following simple rules will help you in this 
task.  

1. Since the error of the measurement is only an approximate estimate of the 
uncertainty of the measurement, we do not need to keep more than one or two largest 
digits in it. The smallest digit in the mean value should be of the same order as the 
smallest significant digit of the uncertainty. Examples:  

Incorrect  Correct 

517.436 ± 0.1234 517.4 ± 0.1 or 517.44 ± 0.12 

24.3441364 ± 0.002 24.344 ± 0.002 

12385 ± 341 12400 ± 300 or 12390 ± 340 

2. When adding or subtracting two numbers, the result should have the same number 
of the significant digits after the decimal point as the least precise summand. Example:  

23.5527824.3445.517 =+  
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3. When multiplying or dividing, the result should have the same total number of the 
significant digits as the least precise multiplier. Example:  
   

1234.3 x 23.45≈28940 

4. For other operations (raising to power, square root, exponent) the rule is similar to 
the one for the multiplication and division: you should keep as many significant digits 
in the final result as you had in the input. Example:  

889.1567.3 ≈  

Appendix 3. Commercial Metal and Alloy Densities 

Table of density (specific gravity) of alloys.   
 

SG = Specific Gravity; the units are either g cm-3 or kg m-3 
  CE = Coefficient of linear Expansion (µ inch/ inch-°F) 
 
Common name and classification   SG   CE 
Aluminum alloy 380 ASTM SC84B   2.7   11.6 
Aluminum alloy 3003, rolled  ASTM B221  2.73   12.9 
Aluminum alloy 2017, annealed ASTM B22  2.8   12.7 
Hastelloy C      3.94   6.3 
Cast gray iron    ASTM A48-48. Class 25 7.2   6.7 
Ductile cast iron    ASTM A339, A395  7.2   7.5 
Ni-resist cast iron  type 2    7.3   9.6 
Malleable iron    ASTM A47   7.32   6.6 
Cast 28-7 alloy (IID) ASTM A297-63T  7.6   9.2 
Aluminum bronze   

ASTM B169, alloy A;ASTM B124, B150 7.8   9.2 
Ingot iron   (included for comparison) 7.86   6.8 
Plain carbon sheet  AISI-SAE 1020  7.86   6.7 
Stainless steel   type 304   8.02   9.6 
Beryllium copper 25 ASTM B194   8.25   9.3 
Inconel X, annealed     8.25   6.7 
Yellow brass (high brass) ASTM B36, B134, B135 8.47   10.5 
Copper    ASTM B152, B124, B133, B1, B2, B3 8.91   9.3 
Haynes Stellite alloy 25 (L605)   9.15   7.61
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Appendix 4. THE VERNIER CALIPER 
 
A vernier caliper consists of a high quality metal ruler with a special vernier scale attached which 
allows the ruler to be read with greater precision than would otherwise be possible.  The vernier scale 
provides a means of making measurements of distance (or length) to an accuracy of a tenth of a 
millimeter or better.  Although this section will be devoted to the use of the vernier caliper, it should 
be noted that vernier scales can be used to make accurate measurements of many different quantities.  
In the future, you will also use an instrument with a vernier scale to make precise readings of angular 
displacements. 
 
 

JAWS

SAME DISTANCE AS
BETWEEN JAWS

INCH

CM

VERNIER SCALE

RULE

0 108642

0

0 5 10 15 20 25

1 2 3 4 5 6 7
1 2

987654321

 
 

Figure 1:  Vernier Caliper 
 
 
Looking at the vernier caliper in Fig. 1, notice that while the units on the rule portion are similar to 
those on an ordinary metric ruler, the gradations on the vernier scale are slightly different.  The 
number of vernier gradations is always one more than the number on rule for the same distance.  The 
line on the vernier which is aligned with one on the rule tells us the fraction of the units on the rule. 
For example, in Fig. 1 the vernier reads 1.440 cm or 0.567 in. 
 
To use the vernier caliper: 
 
(1) Roll the thumb wheel until the jaws are completely closed (touching each other). Now check 

whether the caliper is reading exactly zero.  If not, record the caliper reading, and subtract this 
number from each measurement you make with the caliper. 
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(2) Use either the inside edges of the jaws, or the outside edges of the two prongs at the top of the 
caliper to make your measurement.   Do not use the tips of the prongs.  Roll the thumb wheel 
until these surfaces line up with the end points of the distance you are measuring. 

 
(3) To read the caliper: 
 
 (a) record the numbers which correspond to the last line on the rule which falls before the 

index line on the vernier scale.  On the following page, this would be 32 since the index 
line falls just  after the 32 cm line. 

 
 (b) count to the right on the vernier scale until you reach a vernier line which lines up with a 

line on the rule and record the number of this vernier line as your last digit. on the 
following page it is the ninth vernier line which is aligned with one on the rule, so the 
whole distance is 32.9 cm. 

 
The following pages show six vernier scales, similar to that on the vernier caliper, which will allow 
you to test your ability to read a vernier caliper. 
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