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Experiment 6 
Rotational Motion 

 
 

Reading and Problems: 
Halliday, Resnick, Walker, Chapter 11 as needed 
Homework 12: turn in as part of your preparation for this experiment. 
1. Show that you can rewrite Eq. 6 as Eq. 12. 
2. Show that you can rewrite Eq. 9 as Eq. 13. 
3. Extra Credit: Substitute Eq. 9 into Eq. 8 to prove that Eq. 9 is a solution of Eq. 8. 
4. Extra Credit: Show that 〉〈ν  is the instantaneous frequency in the middle of timing interval. 
5. Extra Credit: Why is Eq. 13 true only if the timing interval is short compared to the decay 

time? 
 
 

1. Goals 
 
1. To understand the rotational motion of a rigid body. 
2. To study different types of frictional losses in a rotating system. 
3. To explore the use of least-squares fitting procedures in analyzing a dynamical system. 

2. Theoretical Introduction 
 
For a rigid body that rotates about a fixed axis, Newton's second law of motion states that 
 

ατ I=                            (1) 
 
where  τ  is the magnitude of the total torque, I is the moment of inertia of the body and α  is the 
angular acceleration, measured in radians/s2. Let us consider some applications of this equation. 

2.1 No frictional torque: Ideal case 
Our rigid body is a rotating disk.  Suppose there is no friction. Then the total torque, τ, is zero 
and Eq. 1 predicts that α = 0. By definition α = dω /dt, so that one can readily solve for the 
angular velocity ω, 
 

.constant=ω        (2) 

2.2 Constant frictional torque: realistic support of rotating disk 
Now suppose there is a constant frictional torque, fτ , acting on the disk (via the air bearings 
supporting it). Then from Eq.1 we have: 
 

dt
dIIf

ω
=α=τ−=τ        (3) 

dt
dIf
ω

=τ− .                        (4) 
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Integrating this equation, we obtain: 
 

∫∫
τ

−=ω dt
I

d f                      (5) 

t
I

fτ
−ω=ω 0                                                                 (6) 

where  is the value of ω at t = 0. The minus sign agrees with the notion that friction causes the 
angular velocity to decrease with time.  

0ω

 

2.3  Frictional torque proportional to ω : magnetic braking 
 
Suppose now that τ = - C ω, where C is an arbitrary constant. Using Eq. 1 we now obtain: 
 

dt
dIC ω

=ω−=τ      (7) 

This can be rewritten as 
 

ω−=
ω

I
C

dt
d .      (8) 

 
The solution of this differential equation is 
 

ω = ωo exp ( - γ t)              (9) 

where ωo is the initial angular frequency and γ is the decay rate (in s-1).  We see that the angular 
frequency now decreases exponentially with time.  As we noted in the experiment on damped 
harmonic motion, 1/γ is the damping time constant, which is the time for the object to decay to 
1/e (0.368) of its initial value.  Comparing Eqs. (8) and (9), the damping rate is given by γ = C/I. 
 
 

3. Apparatus 
A cross-sectional view of the apparatus is shown on the next page. It consists of a stationary base 
on which is mounted a rotating platform supported by nearly frictionless air bearings. This 
rotating disk has alternating black and white bars on its circumference.  They allow us to observe 
how fast the disk is turning by watching the rate at which bars pass.  As the disk rotates, the bars 
sweep by a photo-diode detector whose output is amplified to yield standard (TTL) logic levels  
corresponding to the presence of a white (TRUE) or black (FALSE) bar. When you are aligned 
with a white bar, the red LED (light emitting diode) on the display is lit. Your instructor will 
show you how to connect this output to the terminal board that is attached to a special data 
acquisition card residing in your PC. Once in the computer, these signals will be analyzed by 
various programs written in the LabVIEW language. 
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      Rotating platform  
 
   Air bearing 
 
   Stationary base 
 
 
The theoretical relationships discussed at the beginning were derived in terms of the 
instantaneous angular velocity, ω, but the apparatus used in this lab displays 〉〈ν  on its readout 
LCD screen, and produces an output voltage proportional to 〉〈ν , which is defined as 

〉〈ν  = n / T              (10) 

Here n is the number of bars which pass during a timing interval of size T, and 〉〈ν is the average 
rate (or frequency) at which the white bars pass the detector. (The brackets indicate averaging 
over the time interval T.). 

However, the angular velocity ω and 〉〈ν  are related by the equation  

〈ω〉 = 2π 〉〈ν /N,             (11) 

where N is the number of black bars on the circumference of the rotating platform (and thus 
represents the number of bars in a single revolution of 2π radians). Knowing N allows us to 
calibrate the device readout and change 〉〈ν  into ω.  As in the free fall experiment, we can’t 
measure instantaneous quantities such as ω or ν, only their averages <ω> or <ν> over some time 
interval. Still, we can use the device readout more directly, and by the linear relationship (11) we 
can rewrite (6) as 

π
νν

2
N

o −〉〈=〉〈 α t.     (12) 

 
If the acceleration is constant then velocity changes linearly with time and, as in the gravitational 
free fall experiment, the average velocity in a timing interval is also the instantaneous velocity at 
the center of the interval.  
 
If the frictional torque and hence the angular acceleration depend linearly on the angular 
frequency then it can be shown that 〉〈ν  is the instantaneous frequency in the middle of the 
timing interval, but only if the timing interval is short compared to the decay time I/C. Thus, 
measuring the time dependence of 〉〈ν  yields the time dependence of ω.   We can use (11) again 
to rewrite (9) as 

〉〈ν = 0〉ν〈  exp ( - γ t).      (13)  
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4. Questions for preliminary discussion 
1. How you will assess the uncertainty of N?  (You may change your mind after working with 
the apparatus.) 
2. How you will quantitatively determine the uncertainty of 〉〈ν ? 

Experimental Procedures 

5. Determination of N 
The objective here is to determine N, the number of black bars on the circumference of the disk.  
Note that N is an integer. 

1. Make sure the air is flowing through the bearing before you spin the aluminum disk! 
Failure to do so could result in irreversible damage to the apparatus. Also, be sure the red 
magnet is far away from the disk, and has the iron “keeper” across its poles. 

2. A computer program is provided that counts the number of black bars which pass by the 
photocell. Connect the output of the apparatus to the data acquisition card on the PC. The 
ground wire (yellow or black) goes to terminal 33 and the signal wire (red) to terminal 47. 
Open the program in the Labview:  

      C:\Labview\Vi.lib\vi-for-phy191\counter.llb\simplecounter.vi. Set device=1; counter=5. 

Clicking the Arrow button on its menu resets the counter and starts the count. 

3. Position the platform so the little red light is on and reset the counter to zero. Carefully mark 
this starting angular position of the platform. Now run the program, and smoothly rotate the 
platform through exactly 5 (or 10) revolutions, being sure to stop at a point where the red 
light is on.  Do not let the platform reverse direction: edges count in either direction! Get 
the edges counted from the program. If M is the number of revolutions and Nc the total 
number of counts then N = Nc / M .  Explain your estimate for the uncertainty in N. 

6. Undamped Rotation 

The objective of this part of the lab is to determine if there is a significant frictional torque in this 
apparatus.  For the rest of the lab, the ground wire (yellow or black) stays at terminal 33 and the 
signal wire (red) now goes to terminal 48. 

1. Open a program in the directory C:\Labview\Vi.lib\vi-for-phy191\rotationalvelocity.vi. Set 
Device=1, Total Time=100 sec, and Average Time = 1 sec. 

2. Give the disk enough angular momentum so that 0〉ν〈  reads between 250 Hz and 300 Hz on 
the LCD display of the apparatus. Run the program by clicking the arrow.  

3. Exit the program. Choose No to the question “Save changes to rotationalvelocity-.vi?”  

4. Use Kgraph to open the data file as done in Exp 5. The data file contains Average Time and 
Frequency. Make a plot of 〉〈ν  vs. time. Estimate the uncertainty for 〉〈ν  (and explain how 
you got it!) and show error bars on the plot. 

5. Fit the data to Equation (12) to determine values and uncertainties for 0〉ν〈  and α.   
6. Extra Credit: Check your uncertainty estimate by examining the residuals to the fit.  What 

uncertainty would have given about 2/3 of the points within the error bars?  Hint: You can 
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make a data column with the residuals after you have done a general curve fit by Curve Fit | 
View | Copy Residuals to Data Window. 

7. Damped Rotation 

The objective of this part of the lab is to determine if a magnetic brake causes a frictional torque 
that depends linearly on ω.  
 
1. Remove the “keeper” bar from the poles of the red magnet and place the magnet underneath 

the aluminum disk. Use the same program as you did in part A, set Total Time=100 sec and 
Average Time = 1 sec. Spin the disk so that its initial 〉〈ν  is between 250 and 300 Hz, then 
run the program. When done, take the magnet off the apparatus and replace the “keeper” 
across its pole faces. 

2. Make plots of 〉〈ν  vs. time. Fit the data to equation (13) and determine the best fit values and 
uncertainties for parameters , γ. 0〉ν〈

3. Now use another method to estimate the same parameters.  Convert Eq. (13) to a linear form 
by taking the natural logarithm (ln) of both sides (see the Appendix of Lab 5, and Taylor 
section 8.6).  Calculate  from your data, and make plots of 〉ν〈ln 〉ν〈ln  vs. t . Fit your data 
using the general least-squares editor and find parameters ο〉ν〈ln  and γ  and their 
uncertainties.  Are they compatible with the values you found earlier?  Summarize your 
comparison in a table. 

 

8. Questions and Analysis 
1. From your data in Part 6 deduce if there is a significant frictional torque. If so, do your data 

imply that this torque is constant? In other words, is Eq. (6) obeyed by your data? Be sure to 
show clearly how you draw your conclusions. 

2. In Part 7 how well does Eq. (13) describe your data? Look for systematic deviations in your 
experimental data records.   

3. Extra Credit: Can you think of a better functional form to fit to the Part 7 data, taking into 
account what you have learned in Parts 6 and 7?  If so, does it actually better describe the 
data, in a self-consistent manner?   Summarize your comparison in a table. 

4. Extra Credit: What is the physical mechanism by which the magnet causes the wheel to slow 
down?  Why, in particular, causes a torque proportional to ω? You can see that the magnet 
has no tendency to stick to the disk when it is stationary: the aluminum disk is non-magnetic.  
Hint: look for information on “eddy currents” or “magnetic braking”. 
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