Physics 820 homework III, due Mon Sep 20

Reading: Chapter 2

Problems:

1. Goldstein, Problem 1-10.
2. Two particles, characterized by charge q_{1} and q_{2}, respectively, and by mass of m_{1} and m_{2}, move under the influence of each other in an external uniform electric field \vec{E}. Examine the Lagrangian for the particles with external and mutual Coulomb potential terms and demonstrate that the particle motion may be studied by considering separately the motion of the center of mass and the motion in the particle relative separation.
3. Goldstein, Problem 1-16.
4. Goldstein, Problem 1-23.
5. Use the Lagrange's equations in combination with the Hamilton's principle to find the shortest curve joining two arbitrary points on a cylindrical surface of radius R. Note: You can select coordinates from the cylindrical system such that one of the points is located at $(0,0)$ and the other at $\left(\phi_{1}, z_{1}\right)$.
