Physics 820 homework V, due Mon Oct 4

Reading: Chapter 3

Problems:

1. Goldstein, Problem 2-21.
2. Goldstein, Problem 3-14.
3. Goldstein, Problem 3-12. Refrain from following the book's advice of $m=+1$; for convergence, the potential must vanish faster with the distance.
4. The addition to the potential energy $V=$ $-k / r$ of a small correction $\delta V(r)$ makes the bounded orbits deviate from closed; after each turn, the perihelion shifts by a small angle $\delta \phi$. Find $\delta \phi$ for (a) $\delta V=\beta / r^{2}$ and (b) $\delta V=\gamma / r^{3}$.
5. From Aug '02 CM Subject Exam: Discuss the 2-dimensional motion of a particle moving in an attractive central-force described by the force law $f(r)=-k / r^{\alpha}$, where k is positive and $3>\alpha>2$.
(a) Write down the equations of motion in polar coordinates;
(b) Show how conservation laws can be used to derive the formal equation for the orbit of motion;
(c) Describe the nature of the orbits for various possible initial energies and angular momenta. (Graphical methods can be very useful.)
