Cosmic Microwave Background Anisotropies = structure in the CMB

Structure in the CMB

Boomerang balloon flight.

Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

Launch near Mt. Erebus in Antarctica

Astrophysical Journal Supplement 148, pg. 1 (September 2003)
FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) ${ }^{1}$ OBSERVATIONS: PRELIMINARY MAPS AND BASIC RESULTS
C. L. Bennett, ${ }^{2}$ M. Halpern, ${ }^{3}$ G. Hinshaw, ${ }^{2}$ N. Jarosik, ${ }^{4}$ A. Kogut, ${ }^{2}$ M. Limon, ${ }^{2.5}$ S. S. Meyer, ${ }^{6}$ L. Page, ${ }^{4}$ D. N. Spergel, ${ }^{7}$ G. S. Tucker, $2.5,8$ E. Wollack, ${ }^{2}$ E. L. Wright, ${ }^{9}$ C. Barnes, ${ }^{4}$ M. R. Greason, ${ }^{10}$ R.S. Hill, ${ }^{10}$ E. Komatsu, ${ }^{7}$ M. R. Nolta, ${ }^{4}$ N. Odegard, ${ }^{10}$ H. V. Peiris, ${ }^{7}$
L. Verde, and J. L. Weiland ${ }^{10}$

Receited 2003 February 11: accepted 2003 May 29
Results:

- Total density:
$\Omega_{0}=\Omega_{\text {tot }}=1.02 \pm 0.02$
- Age of Universe:
$\mathrm{t}_{\mathrm{o}}=13.7 \pm 0.2 \mathrm{Gyr}$
- Matter density:
$\Omega_{\mathrm{m}} h^{2}=0.135+0.008 /-0.009 \rightarrow \Omega_{\mathrm{m}}=0.27$
- Baryon density:
$\Omega_{\mathrm{b}} h^{2}=0.0224 \pm 0.009 \quad \rightarrow \Omega_{\mathrm{b}}=0.044$
73\% Dark Energy, 22\% Dark Matter,
4.4\% Baryonic Matter

Flat Universe with density fluctuations $\mathrm{P}(\mathrm{k}) \sim \mathrm{k}^{\mathrm{n}}, \mathrm{n} \sim 1$ \rightarrow INFLATION
Astrophysical Journal Supplement 148, pg. 233 (September 2003)
FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) ${ }^{1}$ OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS
L. Page, ${ }^{2}$ M. R. Nolta, ${ }^{2}$ C. Barnes, ${ }^{2}$ C.L. Bennett, ${ }^{3}$ M. Halpern, ${ }^{4}$ G. Hinshaw, ${ }^{3}$ N. Jarosik, ${ }^{2}$ A. Kogut, ${ }^{3}$ M. Limon, ${ }^{3,5}$ S. S. Meyer, ${ }^{6}$ H. V. Peiris, ${ }^{7}$ D. N. Spergel, ${ }^{7}$ G. S. Tucker, ${ }^{5,8}$
E. Wollack, ${ }^{3}$ and E. L. Wright ${ }^{9}$

Recetved2003 Febriary 11; accepted 2003 May 14

What is measured?

Basically,
Power spectum of
$\Delta T / T$
vs. $\quad l=\pi / \theta$
(think of Fourier transforming the sky in angular coordinates)

What is measured?

Basically,
Power spectum of $\Delta T / T$
vs. $\quad l=\pi / \theta$

$$
\text { vs. } l=\pi / \theta
$$

(think of Fourier transforming the sky in angular coordinates)

$$
\begin{gathered}
\text { (Sachs-Wolfe effect) } \\
5 \times 10^{-0}
\end{gathered}
$$

$$
2
$$

$$
\begin{aligned}
& \text { er } \\
& \text { the } \\
& \text { ar }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { he } & 0.0 \\
\text { ir } & \text { on } \\
& \vdots \\
& \vdots \\
& 0 \\
& 0
\end{array}
$$

Position of $1^{\text {st }}$ peak:

- Density fluctuations print through as CBR fluctuations.

$$
\delta \rho / \rho=3 \delta T / T \quad[\mathrm{CO} 28.11]
$$

- Measures angular size of sound waves which permeated universe just before decoupling of CBR.
- Linear size of largest structure
$=$ (speed of sound) x (age of universe at that time)
- Linear size/Angular size $=$ distance
- Distance depends on $\Omega_{\text {tot }}$

- $D=\left(2 c / H_{o} \Omega_{o}\right)$ for large z.

How can curves 3 and 4 give same angular size?

- Decoupling occurred at $\mathrm{z} \sim 1100$ in any cosmological model $R(t)$ same for all models.
- Angular Size Distance to $z=1100$ depends on curvature and on presence/absence of cosmological constant.
- But age of universe at $\mathrm{z}=1100$ also depends on cosmological model.
- Age effect cancels out distance effect for differing values of Ω_{Λ}, but not for different curvatures.

- Type la Supernovae as "standard candles"
\rightarrow accelerating expansion
$\rightarrow \mathrm{q}_{\mathrm{o}}=\Omega_{\mathrm{m}} / 2-\Omega_{\Lambda}$
- CBR anisotropy $\rightarrow \Omega_{\text {total }}=\Omega_{\mathrm{m}}+\Omega_{\Lambda}$

Position \& height of first peak also depend on $\Omega_{\mathrm{m},}, \Omega_{\mathrm{b}}, h$

Height of peak

- Larger $\Omega_{\mathrm{m}} \rightarrow$ all peaks have smaller amplitudes.
- Through change in matter/radiation density ratio during radiation-dominated phase.
- Through effect on when universe becomes matter dominated.

WMAP also measured second peak

- Due to rarefaction of an acoustic wave.
- Larger $\Omega_{\mathrm{b}} \rightarrow$ smaller amplitude of second peak.
- greater inertial mass in oscillating plasma

Astrophysical Journal Supplement 148, pg. 1 (September 2003)

Results:

- Total density:

$$
\Omega_{\mathrm{o}}=\Omega_{\mathrm{tot}}=1.02 \pm 0.02
$$

- Age of Universe:
$\mathrm{t}_{\mathrm{o}}=13.7 \pm 0.2 \mathrm{Gyr}$
- Matter density:
$\Omega_{\mathrm{m}} h^{2}=0.135+0.008 /-0.009 \rightarrow \Omega_{\mathrm{m}}=0.27$
- Baryon density:

$$
\Omega_{\mathrm{b}} h^{2}=0.0224 \pm 0.009 \quad \rightarrow \Omega_{\mathrm{b}}=0.044
$$

73\% Dark Energy, 22\% Dark Matter, 4.4\% Baryonic Matter

Flat Universe with density fluctuations $\mathrm{P}(\mathrm{k}) \sim \mathrm{k}^{\mathrm{n}}, \mathrm{n} \sim 1$ \rightarrow INFLATION

Astrophysical Journal Supplement 148, pg. 233 (September 2003)
FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) ${ }^{1}$ OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS L. Page, ${ }^{2}$ M. R. Nolta, ${ }^{2}$ C. Barnes, ${ }^{2}$ C. L. Benneett, ${ }^{3}$ M. Halpern, ${ }^{4}$ G. Hinshaw, ${ }^{3}$ N. Jarosik, ${ }^{2}$ A. Kogut, ${ }^{3}$ M. Limon, ${ }^{3,5}$ S. S. Meyer, ${ }^{6}$ H. V. Peiris, ${ }^{7}$ D. N. Spergel, ${ }^{7}$ G. S. Tucker, ${ }^{5,8}$ E. Wollack, ${ }^{3}$ and E. L. Wright ${ }^{9}$ Recetved 2003 Febriary 11; accepted 2003 May 14

Dark Energy Measured using

Type Ia supernovae as "standard candles"

Ed Loh + collaborators (Baldwin, Donahue, Zepf)

- Use Spartan Infrared Camera on SOAR to measure SNe at greater distances.
- Are SNe really reliable "standard candles"?
- Dimming by dust?
- Luminosity evolves with lookback time?
- use $\mathrm{dL} / \mathrm{L} \propto 1 /$ time as strawman.

Dark Energy Measured using

 Type Ia supernovae as "standard candles"

Ed Loh + collaborators (Baldwin, Donahue, Zepf)

Dark Energy "Equation of State"

- P- ρ relation is unknown
- Results usually shown assuming $\mathrm{P}^{\prime}=-\rho_{\text {, }}$
- "Cosmological constant"
energy density
Dicus \& Repko

2003:
Goodness of fit contours for various equations of state.

- But poorly constrained.
- Can be measured using high-precision SN observations.
- HST results are coming in.
- Proposed SNAP satellite project?
- But meanwhile, can make progress with SOAR + larger telescopes

