








# Leptons

- Don't feel the strong force
- · Integer or Zero charge
- Flavours:

| $e^{-}$          | "electron"<br>(0.511 MeV)                  | (1897)                      | In atoms                                              |
|------------------|--------------------------------------------|-----------------------------|-------------------------------------------------------|
| $\mu^{-}$        | "Muon"<br>(206 m <sub>e</sub> )            | (1937)                      | First seen in Cosmic Ray                              |
| $	au^-$          | "Tau"<br>(17 m <sub>μ</sub> )              | (1975)                      | Seen at SLAC<br>( Stanford Linear Accelerator Center) |
| $V_e$            | "electron neutrino" Pauli's explanation of | (1956)<br>Beta Decay (1930) | Mass $v_e < 3 \text{ eV}$                             |
| $ u_{\mu}$       | "Muon neutrino"                            | (1962)                      | $v_e < 3.00$<br>$v_u < 0.19 \text{ MeV}$              |
| ${\cal V}_{	au}$ | "Tau neutrino"                             | (2000)                      | $v_{\tau}$ < 18.2 MeV                                 |

### Quarks

- · Feel the strong force
- · Fractionally charged

$$Q = \begin{cases} \frac{2}{3} \\ -\frac{1}{3} \end{cases} \times \text{ Proton charge}$$

Constituents of neutron and proton (udd) (uud)

· Flavors:

#### **Baryon**

A strongly interacting particle that is composed of quarks and has a spin that is an integer multiple of  $\hbar$  (e.g., a quark, neutron, or proton).

### The Standard Model of Particle Physics

- Matter fields (make up all visible matter in the universe)
  - Fermions (Spin 1/2)

Scalar (Spin 0)

Higgs Boson ( Not yet found! )

( From Higgs Mechanism —— Spontaneous Symmetry Breaking)

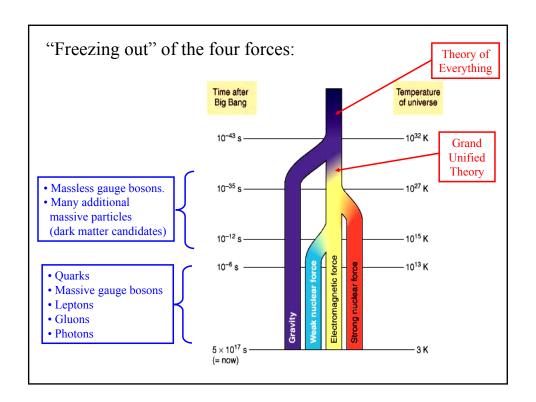
## The Standard Model of Particle Physics

- Interactions ( mediated by interchanging Gauge Bosons, spin-1 force carrier )
  - 1) Electromagnetic Interaction (QED)

Photon (massless)

2) Strong Interaction (QCD)

Gluon (massless) (1979)


3) Weak Interaction

 $W^+, W^-$  and Z Gauge Bosons (1983)

( massive 
$$M_W = 80.4 \text{ GeV}$$
  $1 \text{ GeV} = 10^9 \text{ eV}$  )  $M_Z = 91.187 \text{ GeV}$ 

In SM, the Mass of W-boson, either  $\ensuremath{W^\pm}$  or  $\ensuremath{Z}$  , arises from the Higgs Mechanism

(Without it, Gauge Bosons have to be massless from gauge principle.)

