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Results:

» Total density: Q, = Q= 1.02 z0.02

* Age of Universe: t, =13.7 z0.2 Gyr

* Matter density: Q.,h? = 0.135 +0.008/-0.009 & Q= 0.27

* Baryon density: O h? =0.0224 +0.009 > Q. =0.044

73% Dark Energy, 22% Dark Matter,

4.4% Baryonic Matter

Flat Universe with density fluctuations P(k) ~ k", n ~ 1
= INFLATION
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What is
measured?
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Position of 1%t peak:

Density fluctuations print through as
CBR fluctuations.

op/p=35T/T [CO 28.11]
Measures angular size of sound waves

which permeated universe just before
decoupling of CBR.

Linear size of largest structure

= (speed of sound) x (age of universe at
that time)

Linear size/Angular size = distance
Distance depends on Q,,

* D=(2c¢/H,0) for large z.
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How can curves 3 and
4 give same angular
size?

* Decoupling occurred at z ~ 1100
in any cosmological model =
R(t) same for all models.

* Angular Size Distance to
z = 1100 depends on curvature
and on presence/absence of
cosmological constant.

* But age of universe at z= 1100
also depends on cosmological
model.

» Age effect cancels out distance

effect for differing values of Q,,
but not for different curvatures.
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* Type la Supernovae as “standard
candles”

=>» accelerating expansion
2q9,=Q,/2-Q,

* CBR anisotropy = Q. = Q, + Q4
25 C LIS N B B B | | L L L L L L ]
- | No Big Bang 4
g [ ]
172} 20 —
= - ]
o - i 10 =
Q - - | SN fa |
E oasl SUPERNOVAE ] _
‘Bh [ ] i
k=) . .
o _ <o WMAP ]
% e L Expanding Forever ] G 1
@] ] ]
I os closed - elurer 1
< E | cvalution |
G BOOMERANG :/mL |
m e 05 10
0.0 0.5 1.0 1.5 2.0 25 -
Q) = matter density/critical density
Position & height of first peak also
depend on 2, Q, h
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Height of peak A\ Calculated for O, =1

+ Larger Q. => all
peaks have smaller
amplitudes.

— Through change in
matter/radiation
density ratio during
radiation-dominated
phase.

— Through effect on
when universe
becomes matter
dominated.
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Position & height of first peak also

So use constraints from

depend on Q, ), h
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WMAP also measured second peak
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Due to rarefaction of an acoustic wave.

Larger Q, = smaller amplitude of second peak.
— greater inertial mass in oscillating plasma
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Results:

» Total density: Q, = Q= 1.02 z0.02

* Age of Universe: t, =13.7 z0.2 Gyr

* Matter density: Q.,h? = 0.135 +0.008/-0.009 & Q= 0.27
* Baryon density: O h? =0.0224 +0.009 > Q. =0.044

73% Dark Energy, 22% Dark Matter,

4.4% Baryonic Matter

Flat Universe with density fluctuations P(k) ~ k", n ~ 1
= INFLATION
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Dark Energy Measured using

Type la supernovae as “standard candles”
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Ed Loh + collaborators (Baldwin, Donahue, Zepf)

»  Use Spartan Infrared Camera on SOAR to measure
SNe at greater distances.

*  Are SNe really reliable “standard candles”?
— Dimming by dust?
— Luminosity evolves with lookback time?
* use dL/L o 1/time as strawman.




Dark Energy Measured using 2.
Type Ia supernovae as “standard candles”  Z osf =582,
0,0, ) ""“::::“::;‘.;:::gg. No DuStsulmN L 1

] x

0.75 Evolving
+(0.2,0)

5 0.5
=
io.o (? 0.22 -
i 5 025 0.2,0)
' -0.5

0.7 1,0)

5 0 0.5 1 1.5 2 2.5

Z
" : " " : . .
0 02 04 06 08 10 Flux difference as function of z

Redshift z
Ed Loh + collaborators (Baldwin, Donahue, Zepf)

* Use Spartan Infrared Camera on SOAR to measure
SNe at greater distances. CER
*  Are SNe really reliable “standard candles? =

— Dimming by dust?
— Luminosity evolves with lookback time? : .
* use dL/L oc 1/time as strawman. Number per 4 hr SOAR exposure

Dark Energy “Equation of State”

* P-prelation is unknown }‘)/ressure

» Results usually shown assuming P = -p

A .
— “Cosmological constant” energy density

Dicus & Repko
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* But poorly constrained. ST e
» Can be measured using high-precision SN ‘ N
observations. 104"
— HST results are coming in. .
— Proposed SNAP satellite project?
— But meanwhile, can make progress with SOAR
1 1.8 2

+ larger telescopes X [




