Physics 492 homework I, due Fri Jan 16

Reading: Chapter 1.1
Supplementary Reading: Prehistory of Nuclear
Physics, A. K. Wroblewski, Acta. Phys. Pol. B 33, 9 (2002), http://th-www.if.uj.edu.pl
/acta/vol33/ps/v33p0009.ps.gz
Problems:

1. In the Millikan oil-drop experiment, a droplet of mass $1.111 \times 10^{-15} \mathrm{~kg}$ is held motionless by an electric field of $34.0 \mathrm{kV} / \mathrm{m}$. How many extra electrons is it carrying?
2. An oil droplet carrying a net charge $Q$ and having a mass $m$ falls in air at a steady vertical terminal speed between two vertical parallel plates separated by a distance $d$. When a potential difference $V$ is applied across the plates, the droplet moves uniformly at an angle $\theta$ with the vertical. Find $\theta$.
3. An electron in Thomson's apparatus moves under the influence of a $B$-field along a path with a radius of 15.00 cm . If an $E$-field of 20.0 $\mathrm{kV} / \mathrm{m}$ makes the path straight and horizontal, find $B$.
4. Use the figure below, depicting Thomson's electron-beam apparatus, to show that the deflection without the $B$-field is:

$$
Y=\left(\frac{e}{m}\right) \frac{B^{2} L}{2 E}(L+2 R)
$$


5. The figure below shows the Thomson atom model of helium $(Z=2)$. Two electrons, at rest, are embedded inside a uniform sphere of positive charge $2 e$. Find the distance $d$ between the electrons so that the configuration is in static equilibrium.


