Physics 492 homework II, due Fri Jan 30

Reading: Chapters 1 and 2.1-2
Problems:

1. Williams, Problem 1.1
2. Williams, Problem 1.3
3. Williams, Problem 1.5. Skip the derivation, but illustrate your discussion with a sketch of the cross section, marking deviations.
4. (a) Prove that the energy E and momentum \vec{p} of a particle with rest mass m are related by

$$
E=\sqrt{\left(m c^{2}\right)^{2}+(p c)^{2}}
$$

Start with the equations for E and \vec{p} in terms of the particle's velocity \vec{v}.
(b) The Lorentz 4 -momentum p^{μ} for a particle is the 4 -component vector $\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=$ $\left(E / c, p^{1}, p^{2}, p^{3}\right)$. The Lorentz product of the 4 momenta p_{1}^{μ} and p_{2}^{μ} for two particles is defined by

$$
p_{1} \cdot p_{2}=\frac{E_{1} E_{2}}{c^{2}}-\vec{p}_{1} \cdot \vec{p}_{2} .
$$

Use the Lorentz transformation equations for E and \vec{p} to prove that $p_{1} \cdot p_{2}$ is invariant under Lorentz transformations.
(c) Determine $p \cdot p$ for a particle of mass m.
5. Williams, Problem 2.1

