Physics 492 homework II, due Fri Jan 30

Reading: Chapters 1 and 2.1-2

Problems:

1. Williams, Problem 1.1

2. Williams, Problem 1.3

3. Williams, Problem 1.5. Skip the derivation, but illustrate your discussion with a sketch of the cross section, marking deviations.

4. (a) Prove that the energy E and momentum \vec{p} of a particle with rest mass m are related by

$$E = \sqrt{(m c^2)^2 + (p c)^2}.$$

Start with the equations for E and \vec{p} in terms of the particle's velocity \vec{v} .

(b) The Lorentz 4-momentum p^{μ} for a particle is the 4-component vector $(p^0, p^1, p^2, p^3) = (E/c, p^1, p^2, p^3)$. The Lorentz product of the 4-momenta p_1^{μ} and p_2^{μ} for two particles is defined by

$$p_1 \cdot p_2 = \frac{E_1 E_2}{c^2} - \vec{p_1} \cdot \vec{p_2}.$$

Use the Lorentz transformation equations for E and \vec{p} to prove that $p_1 \cdot p_2$ is invariant under Lorentz transformations.

- (c) Determine $p \cdot p$ for a particle of mass m.
- 5. Williams, Problem 2.1