Reading: Chapters 3, 4
Problems:

1. Williams, Problem 3.1. Start from the formula at the bottom of Table 3.1. Expand the r.h.s. there with respect to $q$. The derivative in the Problem is with respect to $q^{2}$. In addition to Problem 3.1, calculate $\left\langle r^{2}\right\rangle$ for a uniformly charged sphere of radius $R$. Verify the validity of the equation in Problem 3.1, for the form factor of the sphere obtained in class and reproduced in Problem 3.2 in Williams. [Hint: Use again a $q$-expansion.]
2. Williams, Problem 3.4.
3. Williams, Problem 4.1.
4. The Coulomb term in the semi-empirical mass formula is

$$
a_{C} Z^{2} / A^{1 / 3}
$$

Using the result of Problem 4.1, calculate the value of $a_{C}$ in MeV . Assume that the nuclear radius is given by $R=1.12 \times A^{1 / 3} \mathrm{fm}$.
Using $a_{V}=15.85 \mathrm{MeV}$, $a_{S}=18.34 \mathrm{MeV}$, and $a_{A}=23.22 \mathrm{MeV}$ and the fact that the binding energy of ${ }_{73}{ }^{81} \mathrm{Ta}$ is 1454 MeV , crosscheck your value of $a_{C}$. Comment on any discrepancy you may find. Note: For use in this and future problems, you may find it helpful to program the binding-energy formula.
The nucleus ${ }_{92}^{235} \mathrm{U}$ can undergo spontaneous fission (see Ch. 5.5) and one of the many fission channels is

$$
{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{35}^{87} \mathrm{Br}+{ }_{57}^{145} \mathrm{La}+3 \mathrm{n} .
$$

Estimate the energy released in this channel. How do the surface and Coulomb energies separately contribute to this release?
(This is a modified Problem 4.2 in Williams.)

## Reminder!

I should receive the topic of your term paper, with a brief description the planned content, on Monday, Feb. 9.

