Physics 492 homework V, due Fri Feb 20

Reading: Chapters 4, 5
Problems:

1. In the semiclassical limit, the Fermi energy of an ideal gas of \mathcal{N} identical spin- $1 / 2$ particles with mass m in a volume V is

$$
E_{F}(\mathcal{N})=\frac{\hbar^{2}}{2 m}\left(\frac{3 \pi^{2} \mathcal{N}}{V}\right)^{2 / 3}
$$

Consider a nucleus with Z protons, $N=A-Z$ neutrons and radius $R=r_{0} A^{1 / 3}$, where $r_{0}=$ 1.12 fm . In the ideal-gas model, the total internal kinetic energy of the nucleus, in terms of Fermi energies for protons and neutrons, is

$$
E=\frac{3}{5} Z E_{F}(Z)+\frac{3}{5} N E_{F}(N) .
$$

(a) Determine E_{F} and E for ${ }_{8}^{16} \mathrm{O}$.
(b) If $|N-Z| \ll A$, then

$$
E \approx E_{0}+a_{A} \frac{(N-Z)^{2}}{A}
$$

where $E_{0}=\frac{3}{5} A E_{F}(A / 2)$ is the energy of a symmetric nucleus with $N=Z=A / 2$. Determine the value of a_{A} in the ideal-gas limit.

Hint: Write

$$
N=\frac{A}{2}+\epsilon \quad \text { and } \quad Z=\frac{A}{2}-\epsilon,
$$

where

$$
N-Z=2 \epsilon,
$$

and expand the ideal-gas energy in ϵ. Be careful in retaining the proper order of expansion. (This is a modified Problem 4.3 in Williams.)
2. Williams, Problem 5.1. Use the coefficient values given in class, i.e. $a_{V}=15.85 \mathrm{MeV}$, $a_{S}=18.34 \mathrm{MeV}, a_{A}=23.22 \mathrm{MeV}$ and $a_{C}=$ 0.71 MeV . Note that to maintain the unit consistency, the mass formula in Williams should be actually written as

$$
\begin{aligned}
M^{\prime}(Z, A) c^{2}= & Z m_{H} c^{2}+N m_{n} c^{2}-a_{V} A \\
& +\ldots-\delta
\end{aligned}
$$

3. Williams, Problem 5.4.
4. Williams, Problem 5.5. Hint: Calculate a_{C} from the Q value of the β^{+}decay of ${ }_{18}^{35} \mathrm{Ar}$. Estimate a_{A} using the fact that ${ }_{56}^{135} \mathrm{Ba}$ is stable and thus the Q values of β^{+}and β^{-}decays must be negative; $Q\left(\beta^{+}\right)<0$ and $Q\left(\beta^{-}\right)<$ 0 imply upper and lower bounds on a_{A}, after substituting the value of a_{C}.
