Physics 492 homework VII, due Fri Mar 5

Reading: Chapters 7 and 14.4

Problems:

1. Williams, Problem 7.5. In one of his considerations, Chadwick compared maximum velocities of protons and of nitrogen nuclei struck by the radiation from the alpha-beryllium reactions. He assumed that the radiation interacted elastically with the matter.

2. Williams, Problem 7.6. What is the mass defect of $^{12}_6C$?

3. Williams, Problem 7.8. Start out by finding the general relation between proton laboratory energy and c.m. kinetic energy of the p-^{19}F system. Further find the general relation between c.m. kinetic energy of the α-^{20}Ne system and α c.m.-energy. Refer all energies in the mass-energy diagram (cf. Figs. 7.3, 7.6 and 7.8) to one common energy, such as the sum of mass energies for p and ^{19}F. Disregard any possible Doppler effect for the gammas. Levels in nuclei are commonly resolved using data such as in this problem.

4. (a) In Coulomb scattering of 7.50-MeV protons by a target of 7Li, what is the energy of the elastically scattered protons at 90°? (b) What is the energy of the inelastically scattered protons at 90° when the 7Li is left in its first excited state at the excitation energy of 0.477 MeV above the ground state? The atomic mass of 7Li is 7.016003 u.

5. The (n,p) reaction, $n + A \rightarrow p + B$, can be regarded as equivalent to β^+ decay in that the same initial and final nuclei are involved. Derive a general expression relating the Q-value of the (n,p) reaction to the energy release Q_{β^+} in β^+ decay.

Reminder!
An outline for your term paper, together with a list of research to be done, is due this Monday, Mar 1.