Physics 492 homework IX, due Fri Apr 2

Reading: Chapter 9
Problems:

1. Williams, Problem 9.1.
2. Williams, Problem 9.2. Hint: Here "free particle" means "real particle" for which

$$
E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4} .
$$

The photon mass is 0 , of course.
3. Williams, Problem 9.3.
4. Williams, Problem 9.4.
5. Consider the charged pion decays, with their branching ratios in parentheses,

$$
\begin{array}{ll}
\pi^{-} \longrightarrow \mu^{-}+\bar{\nu}_{\mu} & (\simeq 100 \%) \\
\pi^{-} \longrightarrow e^{-}+\bar{\nu}_{e} & (\simeq 0.01 \%)
\end{array}
$$

(a) In the $\pi^{-}$rest frame, what are the $\mu^{-}$and $\bar{\nu}_{\mu}$ energies?
(b) In the $\pi^{-}$rest frame, what are the $e^{-}$and $\bar{\nu}_{e}$ energies?
(Particle masses: Williams, Tables 10.3 and 12.1)
6. Consider the common neutral pion decay

$$
\pi^{0} \rightarrow \gamma+\gamma
$$

In the $\pi^{0}$ rest frame the photons have equal energies, equal to $m_{\pi} c^{2} / 2$. Consider a Lorentz frame in which the $\pi^{0}$ energy is $\epsilon_{\pi}$ and in which the photons are emitted symmetrically as shown:

(a) Determine the angle between the photon directions as a function of $\epsilon_{\pi}$. (Hint: In the pion rest frame, the photon momenta are equal in magnitude and opposite, perpendicular to the direction of $\vec{v}$. Apply a Lorentz transformation.)
(b) Calculate $2 \theta$ for $\epsilon_{\pi}=1 \mathrm{GeV}$ and 10 GeV .

## Note:

First paper draft is due on Wednesday, Apr 7.

