Problem Set \#1

PHY 854, Spring Semester, 2004
Chip Brock, chipclass@pa.msu.edu
February 29, 2004

These problems are due on March 19, 2003 5:00 p.m. to my mailbox on the first floor of BPS. Note, $\hbar=c=1$. Feel free to work together, but each of you turn in a version and indicate who collaborated on what problems.

Problem 1 As was done in class, show that the two dimensional matrix representation for the c element of D_{3} is:

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
$$

Problem 2 For D_{3}, show that $f(x, y)=x y$ is a basis function in the 2-dimensional representation.

Problem 3 Complete the formalism to show that that the algebra of $\operatorname{SU}(2)$ contains the term

$$
\left[X_{1}, X_{2}\right]=-2 X_{3}
$$

Remember that the infinitesimal transformation on the vectors is

$$
\delta \xi^{i}=\eta_{j}^{i} \xi^{j}=U_{\sigma}^{i} \delta \alpha^{\sigma}
$$

that the infinitesimal transformation matrix is

$$
\eta=\left(\begin{array}{cc}
i \alpha^{1} & \alpha^{2}+i \alpha^{3} \\
-\alpha^{2}+i \alpha^{3} & -i \alpha^{1}
\end{array}\right)
$$

and that the generators are defined as

$$
X_{\sigma}=U_{\sigma}^{i} \frac{\partial}{\partial \xi^{i}}
$$

Problem 4 (a) Show that the Lorentz character of

$$
\bar{\psi}(x) \gamma^{5} \psi(x)
$$

is that of a scalar and that the parity character is that of a pseudoscalar.

Problem 5 Start with the semi-classical Hamiltonian density for the Dirac field:

$$
H=\int d^{3} x \psi_{j}^{\dagger}(x)(-i \boldsymbol{\alpha} \cdot \nabla+\beta m)_{j k} \psi_{k}(x)
$$

and the Fourier expansion fof that field,

$$
\psi_{j}(x)=\sum_{i=1,2} \int d K\left[a^{(i)}(k) u_{j}^{(i)}(k) e^{-i k \cdot x}+b^{\dagger(i)}(k) v_{j}^{(i)}(k) e^{i k \cdot x}\right]
$$

where $d K \equiv \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}$. Quantize the field and show that the Hamiltonian operator becomes

$$
H=\int d K \sum_{i=1,2} E\left[a^{\dagger(i)}(k) a^{(i)}(k)+b^{\dagger(i)}(k) b^{(i)}(k)\right]
$$

Problem 6 (a) Show that $\frac{1}{2}\left(1 \pm \gamma_{5}\right)$ is a projection operator for right-handed (top sign) or left-handed (bottom sign) Dirac spinors.
(b) Define left-handed and right-handed components and show that the Lagrangian density for free spin $1 / 2$ fields

$$
\mathcal{L}(x)=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)
$$

can be written
$\mathcal{L}(x)=\bar{\psi}_{L}(x) i \gamma^{\mu} \partial_{\mu} \psi_{L}(x)+\bar{\psi}_{R}(x) i \gamma^{\mu} \partial_{\mu} \psi_{R}(x)-m\left(\bar{\psi}_{R}(x) \psi_{L}(x)+\bar{\psi}_{L}(x) \psi_{R}(x)\right)$.
(c) Show that the Dirac Equation for $\psi(x)$ is retrieved using the Euler Lagrange equations.
(d) Show that one can retrieve the Dirac equation for $\bar{\psi}(x)$.

Problem 7 The Lagrange density for a particular important theory for a real scalar field can be written $(\lambda>0$

$$
\mathcal{L}(x)=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{\lambda}{4}\left(\phi^{2}-a\right)^{2}
$$

(a) What is the configuration of $\phi(x)$ for which the classical energy is a minimum? Work it out for both cases of $a>0$ and $a<0$.
(b) If $\lambda<0$ does the system have a ground state?
(c) Do you know why this particular theory is important in elementary particle physics? In a theory of critical phenomena?

Problem 8 The generic charge operator for spin 0 fields is

$$
T=\int d K\left[a^{\dagger}(k) a(k)-b^{\dagger}(k) b(k)\right]
$$

As the generator of a conserved $U(1)$ transformation, this operator serves as both a constant of the motion and as the generator. Show that

$$
\begin{aligned}
\phi \rightarrow \phi^{\prime} & =U \phi U^{-1} \\
& =e^{-i \alpha} \phi
\end{aligned}
$$

where

$$
U=e^{i \alpha T}
$$

Remembering that T is an operator. In order to show this, you will have to work out the commutator of T with ϕ.

Problem 9 Calculate the equation of motion for a massive spin 1 field, B_{μ}. Start with the general relation that we got for the photon before the imposition of the Lorentz condition, namely,

$$
\frac{\partial^{2} B^{\nu}}{\partial x^{\mu} \partial x_{\mu}}-\frac{\partial}{\partial x_{\nu}}\left(\frac{\partial B^{\mu}}{\partial x^{\mu}}\right)=0
$$

To switch to the massive case, we can replace the derivative operator

$$
\frac{\partial^{2}}{\partial x^{\mu} \partial x_{\mu}} \rightarrow \frac{\partial^{2}}{\partial x^{\mu} \partial x_{\mu}}+M^{2}
$$

(a) Show that the relation

$$
\left(\frac{\partial B^{\mu}}{\partial x^{\mu}}\right)=0
$$

then follows. Note, this is not a gauge condition, although it looks like it.
(b) Show that the equation of motion is

$$
\left(\frac{\partial^{2}}{\partial x^{\mu} \partial x_{\mu}}+M^{2}\right) B^{\nu}=0
$$

