Problem Set \#2

revised, 04/21/04
PHY 854, Spring Semester, 2004
Chip Brock, chipclass@pa.msu.edu
April 21, 2004

These problems are due on Friday, April 23, 2003 5:00 p.m. to my mailbox on the first floor of BPS. Note, $\hbar=c=1$.

Problem 11 This was pretty dumb, since I left it in my starting point for this second problem set! Happy birthday. Define left-handed and right-handed components and show that the Lagrangian density for free spin- $\frac{1}{2}$ fields

$$
\mathcal{L}(x)=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)
$$

can be written
$\mathcal{L}(x)=\bar{\psi}_{L}(x) i \gamma^{\mu} \partial_{\mu} \psi_{L}(x)+\bar{\psi}_{R}(x) i \gamma^{\mu} \partial_{\mu} \psi_{R}(x)-m\left(\bar{\psi}_{R}(x) \psi_{L}(x)+\bar{\psi}_{L}(x) \psi_{R}(x)\right)$.

Problem 12 The matrix element for the elastic scattering of an electron from a Coulomb potential is

$$
\bar{u}\left(k^{\prime}\right) \frac{\gamma^{0}}{q^{2}} u(k)
$$

where the k momentum is along the 3 -axis and is the initial momentum of the electron and the k^{\prime} momentum is the final momentum and is inclined at an angle of θ with respect to the 3 -axis. q is the 4 -momentum transfer, $q=k-k^{\prime}$. Since the scattering is elastic, the particle in is the same electron as the particle out, so $E=E^{\prime}$. Show that for

$$
\text { (+helicity) } \rightarrow \text { (-helicity) }
$$

scattering that the amplitude is

$$
A_{\uparrow \downarrow} \propto 2 m \sin \frac{\theta}{2}
$$

Problem 13 Show that $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}$.
Problem 14 Show that $\overline{\xi^{\prime} \not k^{\prime} k}=\xi_{k} k^{\prime} \xi^{\prime}$.

Problem 15 The invariant amplitude for Compton scattering which we derived in class was the following:

$$
T_{f i}=\bar{u}^{(f)}\left(p^{\prime}\right)\left[\not \xi^{\prime} \frac{\not p+\not \nmid+m}{2 p \cdot k} \notin-\notin \frac{\not p-\not k^{\prime}+m}{2 p \cdot k^{\prime}} \not 申^{\prime}\right] u^{(i)}(p)
$$

where each term came from one of the two possible Feynman diagrams. Show that both diagrams are necessary in order to insure Gauge Invariance.

