with all terms as denoted.

\[
\begin{align*}
\overline{\overline{\overline{A}} : \overline{B}} & = C, \\
\overline{\overline{\overline{A}} : \overline{B}} & = C
\end{align*}
\]
For the 2nd order interaction between charged fermions and the electromagnetic field,

\[
\left(\epsilon^{2}\frac{1}{2} \right) \int \int \int_{\infty}^{0} \frac{e^{2}}{e^{2} + P^{2}} \left[\right. \left\{ \right. \frac{2}{(\epsilon^{2})} \left(\frac{\partial^{2}}{\partial x_{1}^{2}} \right) \left. \right\} \left. \right\} \left(\frac{\partial^{2}}{\partial x_{2}^{2}} \right) \left. \right\} \left. \right}
\[\sum_{k=1}^{n} \theta_k = \begin{bmatrix} \mathbf{A}(x) \mathbf{w}^T \mathbf{A}(x) \mathbf{w} \end{bmatrix} \]
The individual terms in the sum \(\langle 0 | Q_0 | 0 \rangle \) each represent potential 2nd order interactions among 2 fermions and a photon. The Feynman graph techniques (Feynman, 1949) are amongst organizing techniques for the calculation of a 3 x 3 matrix.

I'll develop things first in an intuitive, pictographic way. The following rules are very useful and it will become clear at that point.

For an unpaired neuron \(v(x) \) or \(\bar{v}(x) \), we draw a line with an arrow to or from a vertex.

An unpaired \(A(x) \) is either (no arrow)
The connected terms, remember, are

\[T<01A(x_1)A(x_2)10> = \alpha(x_1)\beta(x_2) \]

but only.

And

\[T<01A(x_1)A(x_2)10> = \tilde{\psi}(x_1)\tilde{\psi}(x_2) \]

are non-zero. They are represented as connecting between space time points.

\[\langle 01 \tilde{\psi}(x_1)\tilde{\psi}(x_2)10 \rangle = \langle 01A(x_1)A(x_2)10 \rangle = \langle 01\tilde{\psi}(x_1)\tilde{\psi}(x_2)10 \rangle \]

Now we can break down the 8 non-zero terms in the Dushman expansion and sketch a space time picture for each one. - recognizing potential physical processes as we go.
Local part of the electron Fermi surface terms:

\[
| \text{Type} > = | e \pm \theta > \\
|m_{\text{type}} > = | e \pm \theta >
\]

Summing over all \(e \) and \(\theta \),

\[
\text{where we can consider the classical component}
\]
\[\begin{align*}
-\frac{\partial}{\partial t} \psi(x) & = \frac{i}{\hbar} \left[H, \psi(x) \right] \\
& = \psi(x) \left(\hat{a}^\dagger + \hat{a} \right) \Theta \leq \psi(x) \right]
\end{align*} \]

From Eq. (5) we get the satisfaction of some unit to true in the photon number. The state \(\phi \) is

\[\begin{align*}
0 = & \langle 0 | (\hat{a} + \hat{a}^\dagger) | 0 \rangle = \\
& \langle 0 | 1, 1 | 0 \rangle - \langle 0 | 0, 2 | 0 \rangle \\
& \langle 0 | 0, 0 | 0 \rangle \\
& \langle 0 | 1, 0 | 0 \rangle
\end{align*} \]

\[\begin{align*}
0 = & \langle 0 | (\hat{a} + \hat{a}^\dagger) | 0 \rangle = \\
& \langle 0 | 0, 0 | 0 \rangle - \langle 0 | 1, 1 | 0 \rangle \\
& \langle 0 | 1, 0 | 0 \rangle
\end{align*} \]